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This paper is devoted to proving and discussing several
consequences of the following decomposition theorem:

Let A and B be closed densely-defined linear operators
from the Banach space X to the Banach space Y such that
D(B) 2 D(A), D(B*) 2 D(A*), the range R(A) of A is closed,
and the dimension of the null-space N(A) of A is finite. Then
X and Y can be decomposed into direct sums X =X, P X,
Y=Y, Y, where X, and Y; are finite dimensional, X, < D(4),
XonD(A) is dense in X, and (X,, Y,) and (X, Y;) are invariant
pairs of subspaces for both A and B, Let A; and B; be the
restrictions of A and B respectively to X;, For all integers
k, (BoATH40) = R(A,), and

dim (BoAs)4(0) =k dim (B, 47 )0) = k& dim N(A4,) .
Also, the action of 4; and B, from X; to Y; can be given a
certain canonical description.

The object of this paper is to study the operator equation
Ax — ABx =y, where A and B are (unbounded) linear operators from a
Banach space X to a Banach space Y. In §1, an integer £(A4:B) is defined,
which expresses a certain interrelationship between the null space of A
and the null space of B. In §1 and 2, decomposition theorems are proved
which refine theorem 4 of [2]. The theorems allow us to split off certain
finite dimensional invariant pairs of subspaces of X and Y so that A
and B are well-behaved with respect to p(A:B) on the remainder.

In §4, the stability of these decompositions under perturbation of
A by AB is investigated. In §5, relations between the dimensions
of certain subspaces of X and Y are given, and a formula for the
Fredholm index of A — A\B is obtained. These extend results of Kaniel
and Schechter [1], who consider the case X = Y and B the indentity
operator.

1t should be noted that the results of Kaniel and Schechter re-
ferred to here follow from theorems 3 and 4 of [2]. The results of
this paper properly refine Kato’s results only when the null space of
B is not {0}.

1. We will be considering linear operators T defined on a dense
linear subset D(A) of a Banach space X, and with values in a Banach
space Y. N(T) and R(T) will denote the null space and range of T
respectively, while a(T') is the dimension of N(T), and B(T) is the
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codimension of R(T) in Y. T is a Fredholm operator if 7 is closed,

R(T) is closed, and both «(T) and B(T) are finite. The index of a
Fredholm operator is the integer.

#(T) = a(T) — B(T) .

Let P be a subspace of X, @ a subspace of Y. (P, Q) is an
wnvariant pair of subspaces for T if T(P N D(T)) S Q.

Standing assumptions: In the remainder of the paper, A and B
are closed linear operators from X to Y, D(A) is dense in X, D(B) 2 D(4),
and D(B*)2D(A*); A is semi-Fredholm, in the sense that R(A) is
closed and a(4) < .

The assumption D(B*) 2 D(A*) seems necessary for the proof of
the decomposition theorems. It is often met when A and B are dif-
ferential operators on some domain in Euclidean space, and the order
of B is less than the order of A. It is always met when B is bounded.

The linear manifolds N, = N,(A4:B) and M, = M,(A:B) are defined
by induction as follows :

N, = N(4)
N, = A(BN,.,) , E>1
Mk = BNk .

N, and M, are increasing sequences of linear manifolds in X and
Y respectively.

The smallest integer 7 such that N, is not a subset of B'R(4)
will be denoted by v(A:B). If N, is a subset of B*R(A) for all =,
then we define ¥(4A:B) = w. (cf. [2])

The dimension of N, will be denoted by =, = 7,(A:B), and the
dimension of M, by o, = 0,(A:B). Then 7w, = a(A), and, in general,
. =ka(A). p(A:B) will denote the first integer » such that 7, < na(4).
It ‘7, = na(A) for all intergers n, then we define (A : B) = o.

In general, p(A:B) = v(A:B) + 1. This inequality is trivial if
y,= . If v < o, then M, , S R(A4), while M, £ R(4). Consequently,
Ty < T, + a(A) = (v + 1)a(A4), and so p(A: B) = v + 1.

We define 6,(A:B) = 7, — ®,_,. Then o, is the dimension of the
quotient space N./N,_,. {0,} is a decreasing sequence of nonnegative
integers, and so the limit

0(A:B) = lkim 0.(A4:B) exists.
If 1(A: B) = o, then g(4: B) = a(A).

2. THEOREM 1. Assume, tn addition to the standing assumptions
on A and B, that v(A:B) = oo. Then X and Y can be decomposed
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anto direct sums

X:XO@X1
Y= YO@ Y19

where X, and Y, are finite dimensional, X, & D(A4), X, N D(A) is
dense in X, and (X,, Y,) and (X,, Y,) are invariant pairs for both
Aand B. If A; and B, are the restrictions of A and B respectively
to X, then p(A, B, = o, while A, and B, map X, onto Y,.
Furthermore, X, and Y, can be decomposed as direct sums

X1:P1@"'69Pp
leQl@"'@Qp,

where A, and B, map P; onto Q;. Bases {ri:1< 7= %)} and
{yi:1 =1 =< 9(J) — 1} can be chosen for P; and Q; respectively so that

Avi" = Brj=vy;, 1=i=7()—1
Al =0 = Ba]

Although the decomposition is not, in general, unique, the integers
p and 7(7), 1 <7 = m, are uniquely determined by A and B. In
fact,

p=a(d) —d(A:B).

Proof. Let » = c(A), and suppose that {z!, --- 2.} is a basis for
N(A). Since y(A:B) = o, zi can be chosen by induction so that
Azt = Bzi7'. {#:1<j=<mn, 1<1=<m} is a spanning set for N,,
while {Bzi: 1 <j=<n, 1=<1¢=m}is a spanning set for M,. Also,
{zr: 1= ¢ = n} span N,, modulo N,,_,.

Recall that 0,, = o(m) = dim (N,/N,,_,). By induction, the order of
the 2 can be chosen so that {27 _s(m+s +*+, 2"} span N,, modulo N,,_,.
Then

Gp=1{gin—0@)+1=j=n, 1=i=m}

is a basis for N,,.

Let 7(j) be the greatest integer k such that z¢e G,. If 2te G,
for all k, let 7(j) = . Then 1 =79(1) =92) = -+ = N(n). Let p
be the greatest integer k such that 7(k) < o«. By definition of o, it
is clear that

p=a(d)—o.

Suppose 1 < j = p. 279" is linearly dependent on the set G,y 44,
and so we can write
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() +1 — i
2; ! - E aikzz ’

where the sum is taken over all pairs of integers (i, k), with the
understanding that 2z, =0 if 1 <0 and «; =0 if 2z ¢ G,;:,. For
— 1= q =7(j) define

x?m-—q — z;z(f)—q _ Z aikz}'p—q.—l.
For 0 = ¢ = 7(7),

Bx';l_(j)—q — Bz;{(ﬁ—q — Z aisz}Lc—q—l
= A7}V — 3« Az

— 7(5)—q+1
= Aux]

In particular, Ba?¥ = 0.

Since the sum for 27~¢ involves 27”7¢ only in the first term, the
20— may be replaced by the x79'~% 0 = ¢ =< 7(j), to obtain another
basis for N, +,. Repeating this process for 1 < 5 <p, and making other
appropriate replacements, we arrive at vectors x} such that.

Q) a1, +--, 27 are a basis for N(A4)
(2) Bx; = Azitt,  1=1=7())
3 Buj =0, 1sj=»p.

For convenience, it is assumed that
) ai; =0 if + > 9(j) .

If 1<j=<p, let P; be the subspace of X with basis {«}, -+, 279},
Let @; be the subspace of Y with basis {y}, «-+, 79"}, where yi =
Bxi = Axit'. Let X, =P P ---PP,and ¥, =Q, P --- P Q,. Then
X, and Y, satisfy all the conclusions of the theorem. To conclude the
proof, it suffices to produce complementary subspaces to X, and Y,

which also form an invariant pair.
We will construct functionals

(gh1=3 =70, 1=j=p}on X and
{(fil=iv=7(j)—1, 1=J=p}on Y such that

the fi are in the domain of A* and

(5) gitt=A*fi, l1=1=79(j) -1
(6) 9i=B*f;, 1l=si=79() —1
(7) f;(?/z) - 31'415.77: ’ 1 é j9 k é n

1<¢=4
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(8) gHxt) = 0,0 , 1=7, k=n
1<¢g=1.

Let ¢7'” be any functional on X which satisfies (8). The other
g: will be chosen by induction.

Suppose that f¢ and g? are chosen, for ¢ >4 =1, to satisfy (5)
through (8). By (8), gi™ is orthogonal to N(A), and so g;*' is in the
closure of R(A*). Since R(A) is closed, R(A*) is closed, and there is
an fie D(A*) for which A*f{ = ¢gi*'. Let ¢gi = B*f:. Then (5) and
(6) hold by definition.

To verify (7), we have for ¢ < 1,

Fiyl) = Fi(Axi™)
= (A" )@l
= git@i*) = 0,0

(8) is an immediate consequence of (7).

Let X, = N {N(g):1 =1 = 70), l1=j=p}
Yo=n{N/fi)l=i=n9H-1, 1=7=0p}.

From (7) and (8), it is eclear that X, N X, = {0} and Y, N Y, = {0}.
Since the codimension of X, in X is no greater than the number of
functionals gi defining it, and since this number is the dimension of
X,, we must have X = X, P X,. Similarly, Y=Y, HY..

Suppose @ € D(A) N X,. Then fi(Ax)= (A*fi)z) = gi™(x) =0,
and so Ax € Y,. Similarly, Bx ¢ Y,, and (X,, Y,) is an invariant
pair for both 4 and B.

Since (X,, Y,) and (X,, Y,) are invariant pairs, N,(A:B) N X, =
N(A,: B)). For k sufficiently large, X, & N, A:B), and so

dim {N, (4, : By)/Ni(4,: By)} = dim {N,...(4: B)/N.(A: B)}
=0
= a(4) — p
= a(A,) .

This can occur only if dim N,.(4,: By) = ka(4,) for all integers k.
Hence ((A,: By) = oo.

3. Let (P, Q) be an invariant pair of finite dimensional subspaces
for A and B. (P, Q) is an irreducible invariant pair of type v if
there are bases {x;}7., for P and {y;}7-, for @ such that Bx;, = y,,
Ax, =0, and Az, = y,,, 2= 1 =Z n.

(P, Q) is an irreducible invariant pair of type p if there are
bases {x;,}°., for P and {y;}?=} for @ such that
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Az, = 0= Bz,
Az, =y, = Bz, , 124=n—1.

(P, Q) is an trreducible invariant patr of type p* if there are
bases {x,}%Z} for P and {y;}}-, for @ such that

Bz, =y, , I=i=n—-1
Az, = Y41, 1=2isn—1.

(P, Q) is an invariant pair of type v if P=P, P --- P P, and
Q=Q0Q, P - PR, where (P;, Q;) is an irreducible invariant pair of
type v, 1 =7 = k. Imnvariant pairs of type p or lype p* are defined
similarly.

It is straightforward to wverify that if (P, @) is an (irreducible)
invariant pair of type p(A:B) (resp. p#*(A:B)), then (P, Q) is an
(irreducible) invariant pair of type p(A —AB:B) (resp. #*(A—\B:B)),
for all complex numbers n. If (P, Q) is an invariant pair of type ,
then w(A|P, B|P)= o and p((A|P)*, (B|P)*)= . If (P, Q) is
of type p*, then vy(A|P, B|P)= o and y(A| P, B|P) = o,

THEOREM 2. Suppose A and B satisfy the standing hypothests.
Then there exist decompositions

X:X0®X1®X2
Y= YOGBYl@Y?.

Where (X;, Y,) is an tnvariant pair, (X, Y, s an invariant pair
of type p, and (X,, Y,) is an wnvariant pair of type v. If A, and
B, are the restrictions of A and B respectively to X,, then v(A,, B,) =
and (A, By) = oo.

Proof. Theorem 2 follows from Theorem 1 and Kato’s Theorem
4 [1], after it is noted that the latter theorem, although stated only
for bounded operators B, is valid under the less restrictive assump-
tion that D(B*) 2 D(A*).

THEOREM 3. In addition to the standing hypotheses, suppose
that A is a Fredholm operator. Then there exist decompositions

X:XOEBX1@X2®X3
Y = YO@YI@Y2®Y37

where each (X;, Y,) ts an wnvariant pair, (X,, Y,) s of type u,
(X,, Y,) s of type v, and (X;, Y,) s of type p*. If A, and B, are
the restrictions of A and B to X,, then v(A, : B,) = o, p#(4,: B) = o,
(AT : Bf) = o, and v(A% : B¥) = oo,
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X=X X XiDX; and Y*=Y;PY:PYiPY} are
the corresponding decompositions of the adjoint spaces, then (Y'§, X%)
is an invariant pair of type p.(4*:B*), (Y%, X%) is an invariant
pair of type v(A*:B*), and (Y%, X%) is an invariant pair of type
H(A*:. B¥).

Proof. In view of Theorem 2, we may assume that ¢(A: B) = o«
and Y(A:B) = o, Then v(A*:B*) = o, and we can proceed to de-
compose X * and Y *, as in the proof of Theorem 1. The only difficulty
encountered is to produce vectors % to span X, which actually lie in
D(4). An induction argument similar to that used in Theorem 1 to
produce the fi and g can also be employed in this case.

4., Let @"(A:B) be the set of complex numbers N\ such that
A — \B is a closed operator from D(A) to Y, and such that R(A — AB)
is closed and a(A — AB) < . @*(A:B) is an open subset of the
complex plane which, by assumption, contains the point » = 0.

For all » € @*(4:B), Theorems 1 and 2 are applicable to the
operators A — AB and B. Also, for A € @*(A: B) we define

o(\) =0,(A—\B:B)
7,(\) = 7(A — AB: B)
0.(A) = 0«(A — \B: B)

o(\) = d(A —AB:B).

THEOREM 4. Let A and B satisfy the standing hypotheses.
There exists a decomposition

X=X X
Y = YOEBYl

such that (X,, Y,) 1s an wmvariant pair, and (X, Y,) s an invariant
parr of type (A — AB: B) for all complex numbers n. If A, and B,
are the restrictions of A and B to X,, then p(4, — AB,: B,) = o for
all » € @7(A: B) satisfying V(A — AB: B) = oo,

Proof. The points M€ @7(A:B) for which v(4 —AB:B)< o
form a discrete subset of @*(4:B), and so there is a N\ € @* such
that W(4 — VB:B) = . Let X = X, X, be the decomposition of
Theorem 1 with respect to A —X'B and B. Then (X, Y, is an in-
variant pair of type #(A — AB:B) for all complex numbers A, as
remarked earlier.

If e @(A:B) and v(A — AB: B) = o, then X, and Y, cannot
be decomposed further as in Theorem 1, for such a decomposition
would violate the fact that ¢#(4, — M'B,: B)= . Hence ¥(A—AB:B)=
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oo implies ((A, — AB,: By) = oo,

Let D be the subset of @+(A:B) of complex numbers ) for which
YA — AB:B)< o, Dis a discrete subset of @+(A: B) with no limit
points in @*(A : B)(cef [1]).

THEOREM 5. p(A — AB: B) is a constant, either finite or infinite,
Jor xe @7 (A:B) — D.

Proof. In view of Theorem 4, it suffices to prove the theorem
when A and B are operators in an invariant pair of type #. For this,
it suffices to look at an irreducible invariant pair of type g. This case
is easy to verify.

THEOREM 6. o(\) is constant on each component of @+(A: B).

Proof. It suffices to show that o(\) is constant in a neighborhood
of an arbitrary point N € @ (4A:B). Let X=X X P X, and Y =
Y, @Y. @Y, be the decomposition of Theorem 2 with respect to
A — NBand B. Then v(4, — AB,: B,) = o for A near \’, and so o(\)=
a(4, — \B;) for N near \'. By Theorem 3, [2], a(4,— AB,) =
a(A, — VB, for A near \.

5. Let X=X X PX,and Y=Y, Y, PY, be the decom-
positions of Theorem 2 with respect to A and B. Let 7, = 7}, + 7} + 7}
and o, = P} + O, + p3 be the corresponding decompositions of m, and
Or. Assume that r is chosen small that 0 < |\ | < r implies » € @*(A:B)
and Y(A —AB:B)= w. Then 7(\) = ko(\) for |N|<r. If k is
sufficiently large,

m(\) = dim X, , IN| <7
1) = dim X,, A=20
) = 0, O<|nl<r.

Also, 0%(\) = ko(\) for |n| < r. For k sufficiently large,

Oi(\) = dim Y,

(dimY,, A=0
PZ(N)Zt

0o , O< N <.
We define, for any » € @+(A: B),
@) n(\) = lim [m(\) — ko(M)]
@) o) = lim [0,(\) — ko (V)]

n(\) and p(\) correspond to z(\) defined in [1]. From the preced-
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ing, we deduce that

3) ﬂ(X):{jl:mX“ O<Ini<r
m(X,; X)), A=0

_ (dimY,, 0< N <7
@ o0 = {dim(Yl@YZ), r=0.

From these formulae, it follows that
(5) a(A — AB) = a(\) + m(\) — p(\) 0< NI <,
for both sides of this expression are equal to
(A, — By + dim X, — dim Y, .

We will assume in the remainder of the discussion that 4 is a
Fredholm operator. The set of complex numbers A\ such that A —AB
is a Fredholm operator will be dencted by @(A:B). @(A:B) is an
open subset of the complex plane, and consists of the union of those
components of @7(A: B) for which B(A — A\B) is of finite codimension
in Y, i.e., for which a(A* — \B*) < oo,

The quantities 7wf(\) = 7w (4* — AB* : B*), 0i(\), o*(\), #*(\) and
0*(\) ave then well-defined for e @(A:B). The formula for the
adjoint operators corresponding to (5) is

(6) a(A* — NB¥) = o*(\) + T (V) — 0" (V) , 0[N <.
Since a(A* — AB*) = B(A — \B), we have

(M KA — AB) = (6(\) — 0*(\))
+ (@) — ) — (o) — ") 0N <

In view of the decomposition of Theorem 3, the jump discontinuity
of #* at A = 0 is equal to that of 7= at A = 0, i.e., they are both equal
to dim X, = dim Y,. Hence (7) holds also for »x = 0, and we arrive at
the following theorem.

THEOREM 7. For all e @(A: B),
k(A — AB) = (o(\) — 0*(N)) + (w(V) — 7T*(N) — (P(A) — P*(N)).

Analogous formulae can be written down if it is assumed, further,
that B is a Fredholm operator. If M(B) = {0} and R(B) is dense in
Y, then p(0\) = p*(\) = 7(\) = w*(\) = 0, and Theorem 7 reduces to

®) #(A — \B) = o(\) — 0*(\), ne @(A:B).

This latter formula is due to Kaniel and Schechter [1], when
X = Y and B is the identity operator.
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