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Several authors studied identically distributed linear forms
in independently and identically distributed random variables.
J. Marcinkiewicz considered finite or infinite linear forms and
assumed that the random variables have finite moments of all
orders, He showed that the common distribution of the random
variables is then the Normal distribution. Yu. V. Linnik
obtained some deep results concerning identically distributed
linear forms involving only a finite number of random vari-
ables. The authors have investigated in a separate paper the
case where one of the linear forms contains infinitely many
terms while the other is a monomial. They obtained a
characterization of the normal distribution under the assumption
that the second moment of the random variable is finite, In
the present paper we investigate a similar problem and do not
assume the existence of the second moment.

1. We prove the following theorem:

THEOREM. Let {X;} be a finite or denumerable sequence of in-
dependently and identically distributed mondegenerate random vari-
ables and let {a;} be a sequence of real numbers such that the sum
> a;X; exists'. Let a+ 0 be a real number such that
(1) the sum > a;X; s distributed as aX,

M

(i) Mai = al.
7

Then the common distribution of the X; is normal.

REMARK. The converse statement is evidently true provided that
oy = a if the sum >}; a;X; contains more than two terms or £(X;) = 0
in case >); a;X; has only two terms.

In §2 we prove three lemmas, the third of these has some in-
dependent interest. In § 3 the theorem is proved.
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1 We say that the infinite sum X;a;X; exists, if it converges almost everywhere,
It is known (see Loeve [3] pg. 251) that for a series of independent random vari-
ables the concepts of convergence almost everywhere and weak convergence are
equivalent.
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208 R. G. LAHA AND E. LUKACS

2. Lemmas. We denote the common distribution of the random
variable X; by F(x) and write f(t) for the corresponding characteristic
function.

LeMMA 1. Suppose that all the conditions of the theorem except
(ii) are satisfied. Then sup;|a;| < |al.

According to the assumptions we have
(2.1) I flast) = fat).

We set b; = a;/a (7 =1,2,---) and obtain
(2.2) I;I JFbit) = f(t) .

The lemma is proven if we show that |b;| <1 for all j. First we
note that if |b;| =1 for at least one value of j, then X; has neces-
sarily a degenerate distribution. We consider the case where |b,| > 1
for at least one value k. We see then from (2.2) that

L= [fOt) | = | f@]

which means
1= /@) = | fEtb) ] = 1 fEb0)] = --- }‘grglf(t/bﬁ)l =f0)=1.

Therefore |f(f)| =1 and the distribution of X, is again degenerate.
We conclude therefore that

(2.3) |b;| <1 (F=1,2.--)

LEMMA 2. Suppose that all the conditions of the theorem, except
(ii), are satisfied then the function f(t) has no real zeros.

We first remark that the existence of the infinite sum 3};a;X;
implies that the sequence of random variables Sy = >3 y.1a;X; con-
verges to zero (as N — o) with probability 1. It follows from the
continuity theorem that

(2.4) lim TI flat) =1
N—oo j=N+1
uniformly in every finite t-interval.
Let € > 0 be an arbitrarily small number and let T' be a positive
number. It follows then from (2.4) that there exists an N, = Ny, T)
such that for all N = N, the inequality
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(2.5) I bt —1] =

holds uniformly for |¢| =< T.
We give an indirect proof of Lemma 2. Suppose that the funection
f(t) has real zeros and let t, be one of the zeros of f(¢!) which is
closest to the origin. Then

TJ_I Sit) = f(t) =0,

so that either f(b;t,) = 0 for at least one value of 7 or the product
is infinite and diverges to zero at the point ¢ = ¢,. The first case is
impossible by virtue of (2.3) while the second contradicts the uniform
convergence of the infinite product so that Lemma 2 is proven.

LEMMA 3. Let {X;} be a finite or denumerable sequence of im-
dependently and tdentically distributed nondegenerate random vari-
ables and let {a;} be a sequence of real numbers such that the sum
Svia;X; exists. Let a = 0 be a real number such that sup;|a;| <|al.
Suppose that the sum >.; a;X; has the same distribution as aX,, then
the common distribution of each X; is infinitely divisible.

To prove Lemma 3 we write (2.2) in the form?

(2.6) £ = FOLFOL -+ fOt)Ox(0)
where
(2.7) o5(t)= 1] 7ibst)

and where N is so large that the inequality (2.5) holds. Using (2.6)
we see that

>

o

J,
J

1

(2.8) F@ = 100 11 17001 1T 0269|040

I

We repeat this process n times and obtain

J1teHin

(2.9) f(t) = { T . [f(bir - bA’,'Nt)](”;fr“fm}
. {ﬁ 11 . [@ (b1« - blgNt)](n—k;jl---jN)} .

k=1 jyteetiy=n—
Here all 5, =0 and (m ; 3, -+ 5y) = ml/g! -+ jy!. Formula (2.9) in-
dicates that the random variable X, whose characteristic function is f(¢),
isthesumof k, = N+ N"*' 4 ... + N? 4+ N + 1 independent random

2 If the sequence {Xj;} is finite then N is equal to the number of variables Xj;
so that ox(t) = 1.
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variables X, ,(k — 1,2, ---, k,), that is X = Sk» X, , for every n.

Such sequences of sums of independent random variables occur in
the study of the central limit theorem, and we give next a few results
which we wish to apply.

We say that the summands X, , are uniformly asymptotically negli-
gible (u.a.n), if X, , converges in probability to zero, uniformly in %,
as » tends to infinity; this means that for any € >0
(2.10) lim max P(X,,|=¢)=0.

n—oo 1Sk<ky,

It is known (see Loéve [3] pg. 302) that condition (2.10) is equi-
valent to
(2.11) lim max |f,,.(t)—1]=0

n—oo 1<ksk,
uniformly in every finite ¢-interval.

Let X, (k=1,2,--+,k,) be, for each %, a finite set of inde-
pendent random variables and suppose that the X,,, are u.a.n. Then
the limiting distribution (as # tends to infinity) of the sums >%», X .
is infinitely divisible.

For the proof we refer the reader to Loéve [3] (pg. 309).

We turn now to the proof of Lemma 3 and show that the factors
of (2.9) satisfy condition (2.11).

Let € >0 be an arbitrarily small number and 7 > 0. We see

from (2.5) and (2.7) that we can select a sufficiently large N such
that

(2.12) |041) — 1| =< ¢

uniformly in |[¢| < T. Since |b;] <1 we have
[bjte- bt | < T

so that, according to (2.12),

(2.13) |@y(bir e~ bivt) —1| < ¢

uniformly in |¢t| = T for the chosen value of N.

We consider next a typical factor f(bir-.- bi~t) of the product in
the first brace of formula (2.9). Herej,+j,+ <<+ +Jjy=mandj, =0
so that at least one of the j, is positive. We show now that it is
possible to choose an %, = m,(¢, T') such that for n = n,

@.14) Viin®) = | fB -+ bivt) — 1| < &

uniformly in |¢]| =< T
Clearly,
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(2.15) Vipos () = |S fexp [ibi: -+ bivta] ~ l}dF(x)l

lzlz

-

S fexp [ibi - - - bista] — 1)dF(z)
lz]<4
We choose A so large that

(2.16) {Smgd{eXp [ibi1 - - bivta] — 1}dF(x)[ < 2§ aF@) = < .

lzlz4

‘We note that

b{L...bAJ;N TA .

(2.17) leKA{eXp [ibit «++ binta] — 1}dF(oc)| <

We select now an n* = n*(J, «++, 3y T,¢) so large that for n = n*
the inequality

(2.18) |bit - biv | TA = _;.

holds. This is possible in view of (2.3). There are altogether N™
terms of the form f(bir--- bi~t) in (2.14) and we choose

(2.19) My = nyfe, T') = max n*(Jy o, dm T, €);
P
then (2.14) follows from (2.16), (2.17), (2.18) and (2.19).

We see therefore that the set of independent random variables
X, satisfies the u.a.n. condition (2.11). Therefore the distribution
of X is infinitely divisible and Lemma 3 is proven.

Since f(t) is an infinitely divisible characteristic function, it admits
the Lévy-Khinchine representation

2

(2.20) In f(t) = iat — B2 + S"‘) <e“’” 1 = )1 + 2 16 ()

—eo 1+a2 o
(e 1 it >1+x2
+ L)(e 1 L2 )T d6)

where « and B are real numbers, 8= 0, and where G(x) is a non-
decreasing, right-continuous function such that G(— ) = 0 and G(+ )
= K < . Let now f(t) be the characteristic function of an infinitely
divisible symmetrie distribution, so that f(¢) = f(—t¢). In this case one
sees after some elementary transformations of the integrals in (2.20)
that

(2.21) G(x) + G(—x —0)=C

for all # # 0. Using (2.20) and (2.21) we see that the characteristic
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function of a symmetric infinitely divisible distribution admits the
representation

(2.22) Inf(t) = —5°/2 + S (cos t — 1) L= 2 g ()
where
(2.22a) Hw) = {2G(W) —~C  for x>0

0 for < 0.

Thus H(x) is a non decreasing, right-continuous, bounded function
and H(x) and G(x) determine each other uniquely.

3. Proof of the theorem. We introduce the function

(3.1) 9(t) = f() f(=1)
and conclude from (2.2) that the relation
(3.2) IJI g(bit) = g(?t)

holds for all real ¢. Here g(f) is the characteristic function of a sym-
metric distribution and is therefore a real and even function. It is no
restriction to assume that

(3.33) Oéb]<1 (j:1,2,"')
where
(3.3b) Zf‘, > 1

According to (2.22) we have then the representation

(3.4) In g(f) = —BE/2 + Sjo(cos to — 1)L j; @ 1 H()

where £ = 0 and where H(x) is a nondecreasing, right-continuous and

bounded function. We use (3.4) and (3.3b) and obtain from (3.2) the
relation

(3.5) $ S” (cos byta — 1) LT qH ()
=1 J+o X

= Kﬁ + Sw(cos te — 1) 1 +2x2dH(x) .
2 +0 @

where
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We define the sequence {y,(t)} by

(3.6) ) = Sj (cos btz — 1)L : 2 H(x)

so that

(3.7) lim yr(t) = 4(t) = Kfzf + K (cos tz — 1) L T apry)
Yo eo 0 X

for every real t.

Since «r(t) is the characteristic function of an infinitely divisible
distribution it follows that K < 0, so that we conclude from assump-
tion (ii) that K = 0 and >, 0] = 1.

By a change of the variable of integration in (3.6) we obtain

v

b% + o?
L dH(x/b,.)] .

ry(t) = r (costx — 1) 1+ x2[
+0

x* Li= 1
We write
Y Lanepy| 0
(3.8) Hy(w) = {L[E R B
0 for x < 0.
Therefore we have, for every v,
(3.9) () = rw(cos tr — 2T am ) .
+0 22

It follows then from (3.7) and (3.8) that

(3.10) lim H,(x) = H(x)

for every « which is a continuity point of H(x). The proof is carried

in the same way in which the convergence theorem is proven (see
Loéve [3] pp. 300-301).
In view of (3.32) we have

b + o* .
TTZ_ = b (J =
so that we conclude from (3.8) that

(3.11) H(o) = 3 BH (1%)

J
for all v.
It follows from (3.10) and (3.11) that
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J— - 2 &X

H(z) = lim Hyx) = 3 ij(~>

y—00 Jj=1 bJ

for all x > 0 which are continuity points of H(x).
Using equation (3.3b) we obtain

(3.12) S b;[H(x) _ H(f_)] >0,
i= ;
Since H(x) is a nondecreasing function, we see from (3.3a) that
(3.13) H(z) < H(bﬁ> .
i
It follows from (3.12) and (3.13) that
= H(*
H(z) = H( bj)
for every x > 0 which is a continuity point of H(x). Therefore
H(x) = H(+»)=C
for & > 0. We now turn to equation (3.4) and get
(3.14) In g(t) = —Bt}/2 .

The statement of the theorem is an immediate consequence of (3.1)
and of Cramér’s theorem.
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