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The condition number ¢, of a nonsingular matrix A is
defined by co(A) = ¢(A)p(A~) where ordinarily ¢ is a norm,
It was proved by O. Taussky-Tedd that (¢) c,(A) = c,(AA¥)
when ¢(A) = (tr AA*)!/2 and when ¢(A) is the maximum abso-
lute characteristic root of A. It is shown that (¢) holds when-
ever ¢ is a unitarily invariant norm, i.e., whenever ¢
satisfies ¢(A) > 0 for A + 0; p(ad) = |a| ¢(4A) for complex «;
o(A + B) < o(A) + o(B); p(A) = o(AU) = o(AU) for all unitary
U. If in addition, ¢(E;;) =1, where E;; is the matrix
with one in the (¢, j)th place and zeros elsewhere, then
co(A) = [c,(AA®)]/2, Generalizations are obtained by exploiting
the relation between unitarily invariant norms and symmetric
gauge functions, However, it is shown that (¢) is inde-
pendent of the usual norm axioms,

1. Introduction. The genesis of this study is the proposition that
under certain conditions, the matrix AA4* is more “ill-conditioned” than
A. More precisely, the condition number ¢,(A) is defined for nonsingular
matrices A as

c(A) = p(A)p(A™)

where ordinarily ¢ is a norm. The statement concerning ill-condition-
ing of AA* is the inequality

(c) e(A) < c(AA*) .

Where ¢(A) is the maximum absolute characteristic root of A and
where @(A) = (tr AA*)'?, inequality (¢) was proved by O. Taussky-Todd
[7]. This raises the question of whether (¢) is true for all norms. In
this paper, we show that quite the contrary is true; (¢) is independent
of the usual norm axioms. However, we also prove that (c) does hold
for a quite general class of norms.

In the course of proving these results, we obtain some inequalities
for symmetric gauge functions, which may be of independent interest.

2. Gauge functions and matrix norms. We call ¢ a matriz
norm if

(al) p(A) >0 when A #0,
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(all) p(ad) = |a| p(4) for complex « ,
(alll) P(A + B) = p(A4) + p(B) .

In addition to these basic axioms, various other conditions are some-
times imposed:

(alV) P(E;) =1,

where E;; is the matrix with one in the (¢,7)th position and zero
elsewhere,

(aV) P(AB) = p(A)p(B) ,
(aVI) P(A) = p(UA) = p(AU) for all unitary matrices U .

If @ satisfies al, all, alll, and aVI, ¢ is called a wunitarily invariant
norm.

There is an important connection between unitarily invariant norms

and symmetric gauge functions. A function @ on a complex vector
space is called a gauge fumnction if

( bl) Ou) >0 when uw # 0,
(bII) O(au) = |a | O(w) for complex « ,
(bIII) O + v) = O(u) + O(v) .

Often it is convenient to assume, in addition, that
(bIV) @) =1,

where e; is the vector with one in the ith place and zero elsewhere.
If, in addition to bl, bIl, and bIII,

(bV) DP(thy,y «++,y W) = Pleyy, +*+, E,1s,)

119

whenever ¢; = +1 and (¢, + -+, %,) is a permutation of (1, ---, n), then
@ is called a symmetric gauge function.

It was noted by Von Neumann [8] that a norm ¢ is unitarily
invariant if and only if there exists a symmetric gauge function @
such that ¢(4) = @(a) for all A, where ai, - -, &’ are the eigenvalues
of AA*.

If @ is a symmetric gauge function and u, v satisfy w, < v;, 1 =
1, .-+, n, then it follows [6, p. 85] that

(2°1) @(ulr M) ’u’n) = ¢(v1’ ct vn) .
If @ is a symmetric gauge function satisfying bIV, then [6, p. 86]

2.2) max | ;| < Oy, +++, %) = 3| %]
7 =1
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If ¢ is the unitarily invariant matrix norm determined by @ as above,
then it follows that

H(AB) g N(ABB* A*)
P(A)p(B) ~ [max\; (AA*)]|[max ), (BB*)]
7 max \; (BB*A*A)
7 é n ,

= Tmax x, (A4 |[max; (BE)]

where \,(M) are the eigenvalues of M. Thus, for any k = n, ke is
a unitarily invariant matrix norm also satisfying aV. Of course, @
itself satisfies alV (since @ satisfies bIV), and this property is destroyed
by the renormalization.

3. The condition number inequality.

THREOREM 3.1. If @ is a unitarily inwvariant norm, then
(e) cAA) = c (AA%) .

If @ is a symmetric gauge function which determines ¢, then we
may rewrite (¢) in the form

@(ally tcy an)@(aflv ) a’;l) = @(a?, ) ai)@(a’;27 °t alz) .
Thus, Theorem 3.1 is a very special case of

THEOREM 3.2. If @ is a symmetric gauge function, then
D, <+, Y@, +++, a;7) s tncreasing tn v > 0, where «; > 0.

The proof of Theorem 3.2 is embodied in the lemmas below.

Following [2] we say (a,, ---,a,) is majorized by (b, ---,Db,),
written (a) < (b), if

(i) e, =2+++=2@a,>0,b,= - =0, >0,

k
(11) Zazg bi’ k:]"...’n———17
1

by
i) S, =3

b

?

LeMMA 3.3. If (a) <(b), and @ is a symmetric gauge function,
then

(3.1) X ay, -++, a,) = @b, -+, b,),
(3.2) O(ar, «++, a,") = Qb -+, b") .

Proof. Proofs of (3.1) have been given by Fan [1] and Ostrowski
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[3]; by an argument similar to that of Fan, we prove (3.2).
First, note that we can assume for % and j fixed, & < J,
(3.3) ap=ab,+ (1 —a;, a;=(1— b, + ab;, a; = b, 7+ h,J .

That this is true follows from the fact that if (a) < (b), then a can
be derived from b by successive applications of a finite number of
transformations of the form (8.3) (see [2, p.47]).

Iiet bN: (919 M bh——l} bj; bh+17 MR bj—ly bh) bj-l—l’ ct Y bn); so that @(bly e ybn)'
= &(b,, -+-, b,). By convexity,

(ab; + (1 — @)b)™ < abi* + (1 — a)bi?.
Then using (2.1) and the convexity of @, it follows that

O(a?, -+, a;) = Of(ab, + (L — a)by)?, -+, (ab, + (1 — a)b,)™]
< @(abi* + (1 — a)bi?, -+ -, aby* + (1 — a)byY)
< ad(®it, -+, 050 + (L — a)@(bi?, +-+, 070 . ||

n

As a consequence of Lemma 3.3., we have that if (a) < (b) then
D(ay, + -+, a,)P(ar?, -+, a;") = Dby, -+, b)O0, - -+, 077 .
The proof of Theorem 3.2 is completed by the following

LEMMA 34, Ifa,= - Z2a,>0 and a;, = aj/2aj, b, = aj/2ai,
0 < r<s, then (a) < (b).

Proof. We must show that for all k,

k k
o Ya
L = - , r<s,
n n
Do S
1 1
which is true if and only if
k n k n k n
Doy —arya; =30 3 e —a;) =0,
1 k+1 1 k41 1=1 i=k+1

The latter follows from a; = «a;, ¢ <j. |
Observe that by (3.1) and Lemma 3.4, we have

Daiy --+, ) - dag
Dai, -+-, )~ g

In view of (2.2), it is perhaps natural to expect that

¢.4) M 0 o Zal

= = ,0I<r<s, ¢, =20, >0,
a; = Oag, -, ) T Za ' ”



NORMS AND INEQUALITIES FOR CONDITION NUMBERS 245

for any symmetric gauge function @. To see this we need only prove
the left hand inequality, which may be written in the form

6o ol [eT) = o] [4]).

and which is a consequence of (2.1).
An interesting counterpart to Theorem 3.2 can be obtained from
(3.4).

THEOREM 3.5. If @ is a symmetric gauge jfunction satisfying
bIV, then [@(as, ---, @) is decreasing in r > 0 whenever «; > 0,
1=1,2, +-+,n. Thus [@(a}, ---, at)O(a;", -+, ;" 1s decreasing
m r >0,

Proof. We have that
1< @([&]“, [a_]> < @q a, ] [a ]> ,
- o, a, - a, o,

the first inequality by bIV and (2.1). The second inequality is (3.5).
Thus

so that

(T [T = o T [T

The theorem now follows from bIl. ||

IA

Theorem 3.5 can, of course, be specialized to yield a kind of con-
verse to (c).

THEOREM 3.6. If ¢ ts a unitarily imvartant morm satisfying
alV, then

(¢*) [e(AAN]" = ¢ (4) .

Condition (c*) can also be obtained under somewhat different hy-
potheses. In particular, if ¢ satisfies aV, then

c,(AA*) = p(AA*)P((AA*)™)
= P(A)P(AT)P(AM)P(A*T) = c (A)e, (A7) .
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If also p(A) = p(A*), then (c*) follows. Of course, p(4) = p(4*) if
@ is unitarily invariant.

4. Independence of the norm axioms and (c). It is our pur-
pose here to show that the condition number inequality (c) does not
follow from the usual norm axioms al — aV. In fact, all, alll, alV,
aV and (c) are independent.

REMARK. It has been shown by Ostrowski [4] that al is implied
by all, alll, aV, together with ¢(A4) = 0, so that al is not included
in the list of independent properties. Rella [5] has shown that all,
alll, aIV and aV are independent, and we add (c) to this list.

The results which prove the independence of all — aV and (c¢) are
summarized in the following table, where +(—) indicates that a
property is true (false).

P(A) all alll alV aV (e)

1 — + + -

(rank A)(tr AA*)'/? + — + +
nmax |a,;| + - +
max | a,; | + + — +

I ay| + + + - —

An example which serves in the last line of the table just as well
as Yla,;| is the norm max; >;|a,; | = sup, O(wA)/D(x), where O(x) =
Sl l. Norms of this form are called “subordinate” or “lub” norms,
and in this case @ is a symmetric guage function.

The remainder of this paper is devoted to proving the propositions
indicated in the table.

The results for ¢(A) = 1 are obvious, so we begin by considering
@(A4) = (rank A)(tr AA*)"*, In this case, all and alV are obvious, and
(c) follows from Theorem 3.1, since (tr AA*)Y* is unitarily invariant.
As is well known, (tr AA*)"* satisfies aV; this together with rank AB <
(rank A)(rank B) yields aV for @(A) = (rank A)(tr AA*)"?, That alll
is violated may be seen by taking A = I and B the matrix with a
unit in the (1, 1)th place and zeros elsewhere.

For ¢(A) = nmax; ;|a;;| and max;, ;|a;;| the first four columns
of the table are well known, and we need only prove (¢). Let ¢; be
the row vector with one in the ¢th position and zero elsewhere. Denote
M= (m*) where M = (m,;), and let U= AA*. By Cauchy’s inequality,
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L |l a®® | = |e;Aef || eaATef | = [(e;Uel)(esef ) eaea) (e U "es)]"
= (u uP)" .
Hence,
max | ¢; | max | a*| = (max | uy; | max ju|)",
or
¢,(4) = [c (A4 .

Since U = AA* is positive semi-definite,

wu” = (e;Uei)(e,U'ef) = (eef) =1,
and it follows that c,(AA*) = 1. Thus, we have that
(4.1) ¢(4) = [¢,(AAN)]" = ¢, (AAY),

which gives (e).

Note that the left inequality of (4.1) is a reversal of inequality
(¢*). That (4.1) also holds if ¢(A4) is the maximum of the absolute
values of the characteristic values of A was proved by O. Taussky-
Todd [6].

Since the first four columns of the table are well known for p(A4) =
XY|a;;|, we again need consider only (c). If A :<](E)? 201), where B =

1 9) Then (c) is violated. This same example shows that (c) is

violated for ¢(4) = max; >; | a;;
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