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This paper consists in an investigation of the collineations
of a class of planes constructed by the author. The construction
consists of replacing the lines of a net embedded in a given
plane by subplanes of the same net.

For the case in question, the given plane is the dual of
a translation plane. The full collineation group of the new
plane is isomorphic to a subgroup of the collineation group
of the original plane. The main point of the argument is to
show that the new planes admit no collineations displacing
the line at infinity,

I. In[2], the author introduced a new class of affine planes. These
new planes were obtained by a construction which consists of starting
with a plane which is the dual of a translation plane and modifying
some of the lines. By the very process of construction, a part of the
collineation group of the original plane is carried over to the new
plane.

However, the full collineation group for these new planes has not
been previously determined; in particular, it has not been known
whether there are any collineations displacing the line at infinity. In
this paper, we show that (with mild restrictions on the nature of the
original plane) the full collineation group on each new plane is precisely
the group “inherited” from the original plane.

II. Preliminary definitions and summary of previous results.
We shall be using Hall’s ternary [4] and certain slight modifications
of the ternary as coordinate systems for planes. The point at infinity
on the line ¥ = xm will be denoted by (m); the point at infinity on
o = 0 will be denoted by (o).

In any case where the coordinate system contains a subfield ¥ it
should be understood that small Greek letters (with the exception of-
© and o) denote elements of .

For any affine plane II and any set & of parallel classes, the
system consisting of the points of /7 and lines belonging to the parallel
classes in & will be called a net N embedded in II. If (m) is the
point at infinity corresponding to some parallel class in N, we shall
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find it convenient to speak of (m) as “belonging to N.”
A quasifield (Veblen-Wedderburn system) will be said to be a left
quasifield if the left distributive law, a(b + ¢) = ab + ac, holds.

Let ¥ be a coordinate system with associative and commutative
addition. If ¥ contains a subfield §§ such that

(1) a(a + B) = ax + af
(2) (aa)B = a(afB)
(3) (@ + b)a = aa + ba

for all @, b in T and all o, B in §, we shall say that T is a right
vector space over .

If lines whose slopes are in % can be represented by equations
of the type ¥y = xa + b, we shall say that ¥ is linear with respect to
5.

Now let T be a left quasifield of order ¢*(q > 4). Suppose that
% is a right vector space over a subfield & of order q. Let IT be the
affine plane coordinatised in the usual sense by Z. (Note: The line
of slope m through the origin is written ¥ = xm rather than with m
on the left.)

We can then define another plane I7 [2] whose points are
identical with the points of I7. The lines of /7T are of two kinds:

(1) Lines of /I which have finite slopes not in ¥
(2) Sets of points (x, ¥) such that x = aa + ¢, y = af + d,

where a # 0, ¢, d are fixed elements of ¥ while « and 8 vary over
5.

Now the lines of type (2) may be identified with subplanes (of
order q) of II. If a permutation ¢ on the points of II induces a
collineation of either II or II which carries lines of type (1) into lines
of type (1), then ¢ induces collineations of both planes. If ¢ is a
translation (elation with axis L) of either plane, then ¢ is a transla-
tion of both planes [3].

Now let ¢ be a fixed element of ¥ which is not in . Each
element of ¥ can be written uniquely in the form ta + 5. The lines
of II can be written in a more convenient form if each point is
assigned new coordinates as follows:

If (v, y) = (& + &, 9, + ), let
(5; g) = (t§1 + Ny, t€, + 772)-
Define a new operation * such that
(&, + NN, + N,) = t&; + 7, is equivalent to
(t& + Ez) (t)u1 + /,!2) - t771 + 7 (tE] + Ez)*xz = &N + Niks ,
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where n, == 0 and N (Epe, + f8) =t + N\,
See reference [3].

Then the lines of I7 can be represented by equations of the fol-
lowing forms:

Type (1): §=@ —a)prm + B, meF

Type (2): Yy=20+borx=c.
Let II, denote the affine subplane of /7 which is coordinatised by &
in ; let 7, be the affine subplane of // which is coordinatised by ¥ in
T. Then II, is the set of points for which # = 0; 7, is the set of
points for which & = 0.

The plane I admits all translations of the form (x, y) — (x,y +
b). The points of I7,(x = 0) are in a single transitive class under this
group of translations—which also acts as a group of translations on
IT. There will be further translations if and only if there is some
element ¢ such that (x + ¢ym = am + e¢m for all  and all m. If
there are no further translations, /7 is what we call a strict semi-
translation plane; we shall say that T is a strict left quasifield.

I11. The collineation group. It is well known that a net can
be coordinatised in much the same fashion as a plane. If the net is
embedded in a plane, a coordinate system for the plane induces a
coordinate system for the net, provided the lines x =0, ¥y = 0 and
y = « all belong to the net. Conversely, any coordinate system for
the net can be extended to form a coordinate system for the whole
plane.

LEMMA 1. Let N be a net with q + 1 parallel classes. Let N
be coordinatised by a system €, let F be the subset of € such that
xa 1s defined for all x in €, all @ tn §. Suppose that

(1) Addition in € is associative.

(2) F s a field of order q with respect to addition and
multiplication in €.

(3) The additive group in € is a right vector space over F.

(4) € 18 linear.

Then N can be embedded im a Desarguesian plane.

Proof. The additive group is isomorphic to the additive group of
a fleld £ which is a quadratic extension of . For instance, if ¢ is
odd, multiplication in & may be defined as follows

(t&, + &) o (N + >\'z) = tE N, + ENy) + (06,0, + &)

where ¢ is a fixed nonsquare element of § and ¢ is a fixed element
not in . Then the net N will be embedded in the Desarguesian plane
coordinatised by &.
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LEMMA 2. Let € be a left quasifield coordinatising a plane II
of order ¢*. Suppose that (1) T is a right vector space over a
subfield F of order q and (2) T is linear with respect to F. Let T
be any other coordinate system for Il subject to the following condi-
tion (a). The point () is the same for both T and T, (b) T’ is an
extension of a coordinate system for the net N consisting of those
parallel classes whose slopes in T are infinite or belong to F.

Then T’ s also a left quasifield satisfying conditions (1) and (2).

Proof. The plane IT is a dual translation plane with special point
(c0). This implies that ' is a left quasifield.

It follows from Lemma 1 that any coordinate system for N must
have properties (1) and (2). These properties will carry over to <'.

We now return to the construction discussed in part II. It is to
be understood that £ is a left quasifield of order ¢* which is a right
vector space over a subfield of order ¢, that T is linear with respect
to ¥, and that /7 is the new plane introduced in part II.

Since we shall ultimately be concerned with collineations which
might displace the line at infinity, we shall want to deal with the

projective version of /7. We modify our previous notation so that (m)
denotes the point at infinity on y = x*m.

THEOREM 1. If T 4s a strict left quasifield, then the affine
collineations of II are precisely those which it shares with II.

Proof. For each a in §, there are exactly g translations of I7
with center («). Likewise, there are ¢q translations with center (co).
If £ is a strict left quasifield, so that /I and II admit exactly ¢*
translations, we have exhausted the translations in I7.

This implies that no affine collineations of /7 carry a line of type

(1) into a line of type (2). Hence every affine collineation of /7 is a
collineation of II.

LEMMA 3. Suppose that [T admits a collineation which carries
the line at infinity into some line L. Then, without loss of
generality, we may take L to be T = 0.

Proof. By Lemma 2 of [3], L is some line of type 2, hence L
consists of the set of points of an affine subplane of /I. By Lemma
2, we can choose a new coordinate system £’ for /I such that this
subplane is coordinatised by a field of order ¢ and ¥’ is a left quasifield
satisfying (1) and (2) of Lemma 2. If ¥ is initially chosen in this
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way, L has the equation £ = 0. Since the basic construction consists
of replacing lines by subplanes (see [3]), the change of coordinate

system for /I does not alter the nature of II.

LEMMA 4. If IT admits a collineation carrying L. into T =0,
multiplication in T takes the form

(tal _}— 181) * (taZ + 82) - t[h(aly aZ) - /31“2 + al/BZ]
+ [Bla;l h(al) aZ) + k(ali a?)
- 53“(1 a2 + 181 182] al :/: 0

and

Box (ta, + B,) = ta, B, + B, By + B(B,, a,)

where h, k, and R are functions from § X § into F.

Proof. By Lemma 2 of [3], (o) is the center of ¢ elations with
axis ® = 0. These collineations act on /T in such a way as to leave
I, pointwise fixed. Since x =0 is fixed in I, II, is fixed (not
pointwise) in /7. Thus we have a group of elations of /7 which is
transitive on the ¢ points of /7,0 L.. — (o).

There is a similar group of elations in II which has center (o),
axis © = 0, and is transitive on the points at infinity of II, (excluding
the point at infinity of x = 0). These collineations carry over into /7,
appearing as collineations which leave 7/, pointwise fixed. The col-
lineations leaving 17, pointwise fixed impose automorphisms of 7' which
fix each element of F. The elations of /I with center () and axis
@ = 0 impose the “partial distributive law” ax(b + a) = ab + ax a, be g,
aecP, on T. Lemma 4 then follows from Theorem 2 and 3 of [1].

LEMMA 5. Under the conditions of the previous Lemmas, T has
the property that if bxa = — 1, then bx(axm) = (— 1) xm for all
m in I.

Proof. The proof is essentially the same as the proof of Theorem
11 in [1].

LEMMA 6. Under the conditions of the previous lemmas, there
exist functions f and g such that hia,, o) = fla)a,, kla,, a,) = g(a)a,.

Proof. Given ta, (o, #0), let ta, + B, be determined so that
to, * (tay, + B,) = — 1. By Lemma 4, A(a,, ) + a3, = 0

ko, o)) = — 1.
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By Lemma 5, we have ta, * (fayy + ByY) = — v, which is equivalent
to the pair of equations

e, a;v) + aBy =0
k(au 0(2'7) = —".

Now, by Theorem 11 of [3], T is a right vector space over ¥. In
particular, (ta, + B) * B, = ta,5;, + B.5,. From this, and our definition
of a,, we know that a, % 0. We easily get k(a,, a,Y) = k(a,, o)y for
each nonzero «;, and v in F, where «, depends on «,. Letting a,y =
a, we get k(a, o) = k(a,, a,)a;’a = g(a)a.  Moreover, (e, 0) = 0.
This establishes the part of our L.emma that pertains to k. A similar
argument works for h.

THEOREM 2. Under the hypotheses of Theorem 1 and the addi-
tional requirement that q > 4, Il admits no collineations displacing
L.; the full collineation group of II is the group of affine collinea-
tions which it shares with II.

Proof. The relations between the multiplications in 7 and T is
reciprocal, i.e.

(tfl + 771) (t/\’]. + Xz) = t&, + Ny, =
(6 + &) x(fpy + ) =1+, i N #0,

where M@+ )=t + N,

Let us assume that /I does admit a collineation displacing L.. We
shall show that we must have ¢ < 4. Now let », =0, &, # 0, A, = 0.
We have:

(tél + 7’/1) (thx) = t&, + 7%,
is equivalent to
(&, + 52) * (I — At RO"ly Kfl)) =1+ N,

which is in turn equivalent to the pair of equations (by Lemmas 4
and 6)

7= FEINT — ENTY — ENTR(, AT
Ny = EET FEINT + gEINT — ELET AT — &N RB(N, AT

Let R(n, 2 = S(\,). Solving for &, and 7,, we get

(& + 1) (t\) = t[f(&) —.& S(xl) — >‘41]
+ [9EINT + FEIET — SO — e



COLLINEATION GROUPS OF SEMI-TRANSLATION PLANES 279

By hypotheses, T is a left quasifield which is a right vector space
over ¥. Hence

(&1 + 1) [ty + ] = (& + 1) (En) + (86, + 7)) (L) .

Carrying out the multiplications in the above equation and separating
the components, we get the two equations

FE) =& SO+ 1) — (v + o) = [F(E) — &SO) — pn]
+ [fE) — &8S() — ],
gE) (v + )7+ fEIMET — SO+ 1) — ET(NV + 1)
= [gEINT" + fEIMET — 7 S(N) — BEETA]
+ [gE) ™ + F(&) néET — nuS() — 7L éT .

Eliminating f(&,), we find that the terms involving S also drop ‘out
and we get

gE) v+ )yt =g G N+ gD

Now if g(¢&) = 0, then (¢£) (t\) = [ f(&) — £S(\))]. But the solutionTof
any equation of the type (¢§) x = ¢8 is ¢ = &7'8, which is in .
Since th ¢ ¥, we have a contradiction. We conclude that g(¢&,) = 0.
Hence we must have (A + p)™' = A" 4 g7 for all A, ¢ in §F except in
the cases that )\, ¢, or A + ¢ is zero.
With ¢ = 1, this equation is equivalent to

MA4nN+1=0 v+#0, —1.

Hence % can contain at most 4 elements. Since we assumed g >4,
the theorem is proved.
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