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A characterization of free projective planes is given that
is more symmetrical than the original definition of M, Hall,
It tends to very simple proofs of two fundamental theorems
due to M, Hall and L. I. Kopejkina-one being the result that
every subplane of a free plane is free.

In a fundamental paper Marshall Hall defines a free plane to be
a projective plane which either is degenerate or is generated as follows
from a ‘basis configuration,” m,, consisting of at least two points on
a line together with two isolated points. For each pair of points not
already joined in 7, create a distinet line that joins them and add it
to m,. In the resulting configuration, 7, consider pairs of lines that
do not intersect, and for each create a distinet intersection point and
add it to m,, thus forming =w,. Continuing, construct =,, 7,, 7, 7,, ete.
adding alternately lines and points as indicated above. Then 7 = {J, %,
(with the obvious incidence relation) is a projective plane. It is by
definition a free plane. Hall proved that a free plane contains no
confined configuration, that is, no finite configuration that, like the
Desargues configuration, has =3 points on each line and =3 lines
through each point. Further, using a complicated argument, he showed
that, if a finitely generated plane contains no confined configuration,
it is free. It follows that any finitely generated subplane of a free
plane is free.

L. I. Kopejkina [2] proved, shortly after, that an arbitrary sub-
plane of a free plane is free. (Of interest is the analogy with free
groups.) An exposition of Kopejkina’s theorem appears in [3].

Because it suggests a more symmetrical definition of free plane
that leads to very direct proofs of the above theorems, we introduce
the notion of an extension process.

DEFINITION 1. An extenston process is a well ordered nested
sequence of partial planes m,crw, C -+ C7xw,C +-- (the subsecripts
0,1, -+, m, --- belonging to a well ordered set) such that if a point
p and a line I appear in a term 7, » > 0, and in no earlier term then
p is not incident with I—in other words, the new elements in 7, may
be incident in 7, with elements appearing in earlier terms, but have
no incidences among themselves. From this point we adopt as definition
the characterization of free plane we aim to justify.
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DEFINITION 2. A free plane is a (possibly degenerate) projective
plane, 7, for which there exists an extension process w, C T, & .-
Cr,C -+ with 7y = @ (the empty plane) and = = U. 7, such that
every new point [or line] in a term =, is incident in 7, with at most
two lines [points].

Immediately we can prove

TueEOREM I (Kopejkina). Ewvery subplane of a free plane is free.

Proof. If wis a free plane and m,Cm, C --- Cmw,C -+ IS an
extension process as above for z, then, given any subplane 7/, the
sequence 7, N 7' Cx Na' C --- Cxw, N7’ C -+ is visibly such an ex-
tension process for n'. So @’ is free. J

Some definitions and notations are collected in §2. In §3 the
result of Hall is proved. Our definition of a free plane is apparently
broader than M. Hall’s, In §4 we prove that the definitions are
equivalent.

2. A set of elements consisting of points and lines, together with
a relation of incidence between points and lines is said to form a
partial plane (or configuration) if every two distinct lines [points]
are together incident with at most one point [respectively line], (which
when it exists we call their jotn). If every two distinct lines [points]
are together incident with exactly one point [respectively line] the
system becomes a (projective) plame. A plane is said to be non-
degenerate if it contains 4 points no 3 of which are incident with the
same line, and otherwise is said to be degenerate.

If o and o are subpartial planes of the partial plane m, then
p+o (or pUo), pNo, and p — o are subpartial planes of 7 defined
in the obvious way.

A configuration p in a plane 7 is said to generate the least sub-
plane containing p©. This subplane is denoted by [p]. (or [@]) and is
called the completion of o in w. The plane 7 is finitely generated if,
for some finite configuration pcC x, [p] = 7.

An extension process, &, is regularly presented in the form & =
{r,;;ne N} where N={0,1,--+,n, ---} is a well ordered set. =,  will
denote Unen Tne & is said to act on 7, and have the result &(m,) =
U. 7w, It should be pointed out that the partial plane &(m,) need not
be a full projective plane. The & -stage (or simply stage) of an ele-
ment 2 € £ (7,) is the least » such that xex,. If n >0, v is said to
appear ot &£ -stage n; it is incident in 7, with certain elements called
its & -bearers (or bearers), and these must all lie in 7, = U< Tro
Elements in 7, (by convention) have no bearers. Observe that if ¢,
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is incident with v, and ¥ is not a bearer of x, then x must be a bearer
of y, for they cannot both appear at the same stage.

If p is a subpartial plane of © = & (r,), there is a naturally defined
restriction of & to @, denoted & (@, viz. {r, N P;ne N}. This is
apparently a process that acts on 7, N 0 with result p. Also there is
a naturally defined saturation of & by p, denoted & -+ p, viz.
{m, + p; ne N}. It apparently acts on w, + o with result z. We make
two simple but important observations.

(1) The bearers in &N P of an element x€ P are just those &-
bearers that lie in p.

(2) The bearers in & + p of an element ¢z, + 0 include its
& -bearers and in addition any elements of o incident with « in =.

If & and & are extension processes, & acting on 7, and &
acting on & (w,), then there is a naturally defined composition of &~
with & denoted & o & .

We call a process, &, (a) bound; (b) free; (c) hyperfree if for all
n >0 every new element of 7z, has (a) 2 2; (b) 2; (¢) =< 2 bearers.
Of course an extension process need not fall into any of these categories.
A free plane is by definition a plane which is the result of a hyper-
free process acting on the empty plane, O.

A bound process &, whose result, (), is a full projective plane,
is called a completion process for mw,. If p is a configuration in a
plane 7, there is a canonical completion process & = {0,;ne J*},
indexed on the integers =0, that acts on @ with result [0],. In fact
0o = p and p, is defined inductively as the subpartial plane of = whose
elements are those of o, ; together with all points [lines] of 7 that
are joins of lines [or points] of p©,_, resp. as » is even or odd.

3., Now we prove Hall’s result. Suppose 7 is a finite partial
plane having P points, L lines, and I incidences between the points
and lines. The rank of 7 as defined by Hall is

r(m)=2P+ L) —1I.

LemMA 1. Any finite partial plane, m, which contains no confined
configurations ts the result of a hyperfree process.

Proof. Set m, = m where m is the number of points and lines in
7. Since 7, is not confined, there exists some element x, € 7, which
is incident with =2 elements in x,. Define 7, _,C 7, to be 7, less
the element ,. Since 7, _, is not confined, the process may be re-
peated, and after exactly m steps we obtain n,= @. Then & =
{r;2=0,1, -+, m} is hyperfree and & (Q) = x.
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COROLLARY. The rank of a finite partial plane containing no
con fined configuration is monnegative.

Proof. In fact r(n) = r(x,) = ++- = (@) =0. |

THEOREM II (Hall). A free plane contains mo confined configu-
ration. A finitely generated plane that contains no confined configu-
ration s free.

REMARK. Kopejkina [2] constructed a plane (not finitely generated)
that contains no confined configuration, but is not free.

Proof. Suppose first that 7 is a free plane and & = {7,; ne N}
is a hyperfree process such that &# (@)= n. If p is any finite con-
figuration in 7, there is an element xze€ p having maximal & -stage,
m. Since ¢ is incident with at most two elements of x,, it obviously
cannot be incident with at least three elements of pcx,. Thus p
cannot be a confined configuration.

The proof of the second assertion depends essentially on our defi-
nition of free plane. Suppose that the plane 7 is generated by a finite
configuration 7, and that 7 contains no confined configuration. Let
¥ = {m,;ne J*} be the canonical completion process for m,. Observe
that each partial plane w, is finite and & (7,) = 7. Since & is bound
r(my) = r(m) = +++ = r(z,). But by the corollary above r(7,) = 0 for
all n. Hence for some integer m the minimal rank be attained, and
thereafter r(z,) will have this minimal value. But this means that in
the bound process & = {m,; n = m} every element has exactly 2 bearers
i.e., & is free. Now, by Lemma 1, x, = 7 (x,) where .~ is hyper-
free. So composing & with &~ we obtain a hyperfree process with
Go 7(D)=mr. |

4., This last section is devoted to proving that the adopted defini-
tion of free plane is equivalent to Hall’s.

LEMMA 2. Suppose F s hyperfree and © = F (w,) s a plane.
Then

1) & =F N[r] ts a free completion process for w, in T; in
Jact, for xe|rm)], the S -bearers lie in [m,] and coincide with those
i any completion process for w, in 7.

Q) F=F + |m) ts still hyperfree; in fact, for x¢lx,), the
F-bearers coincide with the F -bearers.

Proof. (1) Let & be any completion process for 7, in z#. If the
first assertion is false, let # be an element of least & -stage, m, for
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which the & -bearers do not conincide with the .&# -bearers. Clearly
m > 0. Then at least one of the =2 & -bearers of x, say ¥, must
fail to be an & -bearer. Since « ¢ 7, y must have x as an & -bearer.
But % doesn’t have z as an & -bearer and ¥ has & -stage <m. This
is a contradiction.

(2) Supposing the second assertion false, we have some x ¢ [7,]
with an .,-bearer y that is not an & -bearer and (hence) lies in
[7] — 7w, But x is incident with yérm,; so z¢[m,] must be an -
bearer of y e [7,] in contradiction to (1). N

REMARK. This lemma has a useful generalization in which x, is
replaced in (1) and (2) by a partial plane p C x, that is ‘complete’ in =,
(see [1, 4.3]). Then, in the proof of (1), the possibility that xzem,
must be eliminated.

DEFINITION 3. A free completion of a partial plane, 7, is a plane
7 which is the result of a free process acting on w,.
Again this seems less restrictive than Hall’s definition, but

TaEorREM III. Any two free completions of a partial plane w,
are related by o unique isomorphism that fixes m,.

Proof. Let & be a free completion process for w, and let & be
the canonical completion process for m, in & (w,). Clearly & (z,) =
[m] = & (m,); and according to assertion (1) of the above lemma, &
is free. The theorem now follows from the fact that, if & and &’
are two canonical free completion processes for m, there is a unique
isomorphism of #(7,) onto &'(w,) that fixes 7. J

In a free extension process {m, 7;} of just two terms we say that
m, is derived from m, by a free addition, and 7w, from 7w, by a free
subtraction. Two partial planes are free equivalent if the one can be
derived from the other by a finite sequence of free additions and
subtractions. Free equivalent partial planes evidently have isomorphic
free completions.

Recall that a basis configuration consists of a number of points
on a ‘base’ line and two isolated points.

THEOREM IV. FHEvery nondegenerate free plane contains o basis
configuration of which tt is a free completion.

Proof. Suppose m = & (@) is a free plane, where & = {r,; ne N}
is a hyperfree process. We may assume without loss of generality
that at each stage one element and no more is added, i.e., 7, = 7, + z,,
where 2z, is an element that has 0, 1, or 2 bearers.
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Applying Lemma 2 to & for stages =n we find that &' =
Z + [r,_] is hyperfree; applying the same lemma to &’ for stages
>n we find that &' N [n,] free completes |z, | + =, to [7,].

Now let a be the first stage such that [7,] is nondegenerate. Then
[7,.] must be a degenerate plane, and, as we have observed, [z,] is a
free completion of [7,_] + x,. By an inspection of the various cases
one shows that [7,_] + 2, is in every case free equivalent to some basis
configuration 7#§. This implies that [z,] is a free completion of =«y.

For n > a, one readily shows (ef. [1] or [3]) that [x,_] + =z, is
free equivalent to [7,_] with a set p, of points adjoined to the base
line, I, of ©¢. (The set p, consists of 2 or 1 points if x, is incident
with O or 1 elements in [7,_], and of course ¢, is empty when z, € [7,_].)
Thus [r,] is a free completion of [7,_] + ..

We will show that = is a free completion of the basis configu-
ration 78 = ¢ + Unse Mae  Let {([7._] + 2)% k€ J*} be the canonical
process that free completes [7,_| + #, to «,, and form the composition
of all these processes to obtain 7= {([7,_] + ®.)*; (n,k)e N x J*, n = a}
where ([7,.] + ) is to be read as #nf§, and N X J* is well ordered
lexicographically. This is a hyperfree process acting on 7¢ with result
7. The saturation .&¥ = .&¥ + nf is the desired free completion process.

Clearly & (zf) = m; and .&° is a bound process since all elements
with <2 . -bearers lie in 7#f. To show that . is actually free
observe that every new element, x, of & appeared in .&” with exactly
9 bearers. If z has an extra bearer, y, in &, then ye [, Where x
has .&-stage (m, k)e N x J* and » > m. But y is incident with both
x and base line [ of #¢, i.e., y is the join of  and !. Then ye|x,]
in contradiction to y€ g¢,. So .&° must be free. |

This completes the proof that the definition of free plane we have
proposed coincides with M. Hall’s definition.
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