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Let 2= 1, E= E¥ and ¢ be continuous on E X E X E with
g(a, -, ) convex, g(a, kb, kc) = k*g(a, b, c) for all real k and
%+ e¥)/2 = gla, b, ¢) = 2(b% + ¢2) for all a,b,ce E where b =
16112 If f(a, d A e) = minyac=ane g(a, b, ¢) then f is a permis-
sible integrand for the two-dimensional parametric variational
problem,

Let 7 be a simple closed curve in E, B be the closed unit
circle in the plane, C be the collection of functions x continuous
on Binte E for which z|dBcy and D = {x€C|x is a D-map}.
Suppose that D is not empty. It was shown in ‘A problem of
least area’, [7], that the problem of minimizing I(f) over D
is equivalent to minimizing I(g) ever D where I(f,x)=

Hf(x, A q), g, x) = ggg(x, 0, 4), D=1 ¢q=1o, and both

integrals are taken over B. The minimizing solution of I(g)
is known to have differentiability properties corresponding to
g, and this solution also minimizes I(f).

The function f is simple, that is, for each a € FE, each
supporting linear functional to f(a, :) is simple, If N =3,
then, of course, each parametric integrand is simple. In this
paper we show that for each simple parametric integrand F'
there exists G, satisfying the conditions imposed upon g, such
that F' is obtained from G as f was obtained from g.

In [7] we showed that the two-dimensional parametric problem in
the calculus of variations considered by [1, 2, 4, 5, 6] could be reduced
to a nonparametric problem provided the parametric integrand f was
properly related to a suitable nonparametric integrand g, f = Ag. When
this occured, not only the existence of the minimizing solution x was
given by the nonparametric theory [3] but also its smoothness, if g
was smooth. Furthermore, we saw that Ag was simple for each g¢,
that is, each supporting linear functional of Ag was simple. We shall
show here that whenever f is simple then there exists ¢g such that
f=Ag.

Let E=FE". If acFE or ac E* let ¢’ =||a|’. Let T,=EANE
with norm N,, thus N,(a A b) is the area of the parallelogram spanned
by @ and b, and let T, = E X E. We define N, on T, by Nya,b) =
(a® + b%)/2. Let T* be the set of all simple linear functionals over T,
which have norm one. Hence, if {e T*, there exist & and » in E*
such that { =& A% with &=7"=1 and &£-7=0. We frequently
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write &a for &(a).

If @ is defined on P x @ then ¢, is defined on Q@ by @,(q) = @(p, q)
for all pe P and g€ Q.

Let &7 be the set of all continuous real-valued functions f on
E x T, for which there exists » = M(f) = 1 with N;/A =< £, =< AN, and
such that f, is convex and positively homogeneous of degree one for
each ae E. Let &, be the set of all continuous real-valued functions
g on E x T, for which there exists A = 1 with N,/Ax < g, < AN, and
such that g, is convex and homogeneous of degree two for each ac E.
For our purposes, &, gives nothing more than &= {h e &2, | there exists
g€ 2, such that h(a, b, ¢) = max, g(a, bcosd — csin b, bsin § + ¢ cos 6)}.

If ge & then let Ag(a, b A ¢) = ming,,—,5. 9(a, b, ¢) and

Ag(a, a) = inf {Eﬁ_‘, Ag(a, b; N ¢;) Eﬁj b; A\ ¢; = a}

for all e T,. We saw in [7] that Age .o and that Ag is simple.
Evidently Ag(a, b A ¢) = min,,, g(a, b, sb + r~'c).

If ge & then 2¢Y* is convex and positively homogeneous of degree
one. Suppose that &, 7ne E* and so (§,7)eTF. We say that (¢,7)
supports 2g;* at (b,¢) if &b+ nc = 2[g(a, b, ¢)]'* and if &d + e =<
2[g(a, d, e)]'* for all (d, e). Furthermore, (£, 7)) supports 2¢%* properly
at (b, ¢) if (&, ) supports 2¢.2 at (b, ¢) and if &b = n¢, &¢ = 7b = 0.

The following lemma appears in [7]

LemMA 1. If (&, n) supports 2¢.* properly at (b, ¢) then g(a, b, c) =
Ag(a,b N ¢c)=1[b A c,& A 7] where [d N e, 0 N\ 0] = p(d)a(e) — p(e)a(d).

Proof. If 7» 0 then 4g(a,rb, sb+ r7'c) = (r&(d) + r9(c)) =
(r + r7)(Eb + ey /4 = (&b + ne) = 4¢g(a, b, ¢) and g(a, b, c) =[b A ¢, E A 7).

Now suppose that &, npeE*&=7"=1 and £-9=0. Let
H, (b, ¢) = [(6b + ne)* + (¢ — 7b)*]/4. 1t is easy to see that H,,, = H,,,
it EAN=pANo,0=0"=1 and p-0=0. Hence we can define
hepny = Hene It quickly follows that h:(bcos @ — ¢sinf, bsiné + ccos ) =
he(b, ¢) for all {e T* and all real . As the sum of squares of linear
functionals, & is continuous, convex and homogeneous of degree two.
An easy computation shows that o A o = if (p, ¢) supports 2hY* at
(b, ¢) where h¢(b, ¢) # 0.

We define Ahy(b A ¢) = infype=pn. Re(d, €).

If ¢ is a real number let ¢+ = max {¢, 0}.

LEMMA 2. Ah;b Ac)=1bAec ]
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Proof. Suppose that { =& A7 where &=7"=1 and &-7=0.
If [bAc, EAN]=1 then (&%) supports 21'*=2h}* properly at (7(c)b—7(b)c,
—&(e)b + &(b)e). If[b A, & Ayl = —1 then &(b) + 7%(b) = ¢* for some
0>0. If 9b)=0 let b = b/&(b) and ¢’ = —&(c)b + &(b)e; if N(b) = 0
let o’ = b/0 and ¢’ = —[&(b) + 0*7(c)]b/[6m(b)] + b¢c. In both cases W', ¢') =
0 and ¥ A" =bAc. If[bACc,EAD]=0Ilet e>0. If nb) =0 let
b = ¢eb and ¢’ = [—9(c)b + N(b)c]/[en(b)]. Then A, ¢') = 6*/4. If (b)) =
0 and &(b) = 0 let b = b/e and ¢’ = ec; now h(b’, ¢') = &[&%(c) + 7*(c)]/4.
If n®) =0 and &(b) = 0 then let b’ = ¢b and ¢’ = —[&(c)b]/[€£(b)] + c/e
to obtain k(V’, ¢') = &’8%(b)/4. The lemma follows by positive homogeneity.

LeMMA 3. Let M= 1, k be continuous on E into [N, \], g€ &
and fla, b, c) = max {g(a, b, ¢), k(a)h:(b, c)}. Then fe Zand Af(a,bNc)=
max {Ag(a, b A ¢), k(a)Ah: (b N ¢)} for all a,b,ce E.

Proof. That fe &isevident asis the fact that A f=max {Ag, kAh.}.
Choose a, b, ¢ with b A ¢ = 0. Then there exist d and e with d A e =
b Acand Af(a,d A e) = fla, d, e), and there exist (0, ¢) which supports
214 properly at (d,e), [7]. Assume, at first, that f(a,d,e) =
9(a, d, e) > k(a)h:(d,e). If (0,0) did not support 2¢.* at (d, e), then
there would exist (d,,e,) — (d, ¢) such that k(a)h(d,,e,) > 9(a, d,, e,)
and this is impossible for large n». Hence (p, o) supports 2¢.* properly
at (d,e¢) and Ag(a,d ANe)=g(a,d,e) = fla,d,e) = Af(a,d Ae). If
f(a, d, e) = k(a)h(d, ) > g(a, d, e), a similar argument, together with
the fact that p A 0 = k(a)(& A %), gives k(a)Ah:(d N e) = Af(a,d A e).
If g(a,d,e) = k(a)he(d,e), let ¢ >0 and ¢ = max{(l + €)'g, k- he}.
Obviously ({1 + €)p, (1 + €)o) supports 2¢Y* properly at (d,e) and
1 + ¢)’g(a, d, e) > k(a)he(d,e). Hence Af(a,d N e) = Ad(a,d N e) =
1 + ¢)*4g(a, d A e) and the lemma follows.

Let fe o and N =A(f). We define k£ on E x [TF¥ — {0}] by
1/k(a, £) = SUDax [@, {1/ f (@, @). Then kis continuous, range k< [(M || |7,
MICI™, k7t is convex and

fla, @) = max k(a Ola, C] .
If f(a, @) = maxeer k(a, {)[a, {] then f is simple.

THEOREM. Let k be as above and f(a, ®) = maxser k(a, O)[a, ].
Then g(a, b, ¢) = maxzer k(a, Ohe(b, ¢) is in Z and f = Ag.
Proof. Let {{,} be dense in T* and N\ be as above. Let
g.(a, b, ¢) = max {N,(©®, ¢)/n, k(a, {)h(b, ¢)}

and
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Ir:(@, b, ¢) = max {g,(a, b, ¢), k(a, {p11)hp41(b, 0)}

where I, = hg,.
By the last lemma,

Ag,(a,b A o) = max {POLD | max ke, C)[b A ¢, L1} = F(a, b A )

for each p. Hence lim Ag, = f. On the other hand, for fixed a, b, ¢
and arbitrary € > 0 there exists 7 such that f(a, b A ¢) < k(a, {)[b Ae, {,]+¢
and so f = lim Ag,.

A little arithmetic shows that
LhiP(r, s) — BP(w, v) | = || (7, 8) — (w,v) ]| .

Hence {g}*} is equicontinuous and ¢, = lim g, is continuous. It is clear
that g, = ¢ and that ge &2. Furthermore, if K and L are compact
subsets of E¥ and T, respectively, then, by a theorem of Dini, g,
converges uniformly to g on K x L.

It remains to show that Ag = lim Ag,. Choose a, b, c€ E and ¢ > 0.
There exist (b,, ¢,) with Ny(b,, ¢,) < MAg(a,b Ac) such that Ag,(a, b,A\¢c,) =
9.(a, b,,¢,) and b, A¢c,=b Ac. By passing to a subsequence, if
necessary, we can suppose that there exists (b,, ¢,) such that (b,, ¢,) —
(by, ¢;). Let p be so large that g,(a, 7, s) > g(a, r, s) — & for Ny(r,s) =
MAg(a,b A ¢) and so large that || (b, ¢,) — (by, ¢) || < &. Then Ag(a,b A c) =
Ag(a, b/ ) = g(@, by, ¢o) < ga4(a, b, ¢0) + & < [93%(a, by, ¢,) + NVe]* + &=
[Agy(a, b, A ¢;) + N%]* + . Hence Ag < lim Ag,, and the opposite
inequality is evident.

If = is a projection of E onto a plane PC FE, then there exist &
and 7 in E* such that &(we) = &(e), n(we) = N(e) and [b A ¢c,E A 7] # 0
whenever b and ¢ are linearly independent points of P. A computation
gives [bAc,E AN(me) =[e ANe,EADb+[bAe &Anlc and we can
identify = with & A 7. Since we can also suppose that & = 7* =1,
&.17 =0, we can identify the set of projections with the elements of T*.

THEOREM 2. Let fe o7 and suppose that for each ac E and each
b A ¢ # 0 there exists a projection £, (in T*) onto the plane determined
by b and ¢ such that [b A ¢, &] > 0 and such that f(a, {(d) A Li(e)) <
fla,d N e) whenever [((d) A Cye),C] >0. Then f is simple and
fla, b A e) = E(a, L)lb A ¢, &

Proof. There exist d and ¢ such that 1/k(a, &) = [d A ¢, L]/f(a, d, e).
Hence
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1 _ [&(d) A Life), &l
k(a, &) fla,d N e)
< [Co(d) /\ Co(e)y CO] e [b /\ C, CO] < 1 .
S, Cd) ANLe)  fla, b Ae) ke, L)

It is evident that the converse of this theorem holds.
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