Pacific Journal of
Mathematics

CHEBYSHEV APPROXIMATION TO ZERO

JAMES MCLEAN SLOSS




PACIFIC JOURNAL OF MATHEMATICS
Vol. 15, No. 1, 1965

CHEBYSHEV APPROXIMATION TO ZERO

JAMES M. SLoss

In this paper we shall be concerned with the questions
of existence, uniqueness and constructability of these poly-
nomials in % + 1 variables (¢, %, -+, %, ¥) of degree not
greater than 7, in x; and m in y which best approximate
zero on I, X I, X -+ X Iiyy, I, =[—1,1], in the Chebyshev
sense,

It is a classic result that among all monic polynomials of degree
not greater than n there is a unique polynomial whose maximum over
the interval [—1, 1] is less than the maximum over [—1,1] of any
other polynomial of the same type and moreover it is given by T.(x) =
27" cos [n are cos z], the normalized Chebyshev polynomial.

Our method of attack will be to prove a generalization of an in-
equality for monic polynomials in one variable concerning the lower
bound of the maximum viz. max_, ., |P. ()| = 2" where P,(x) is
a monic polynomial of degree not greater than n. The theorem will
show that the only hope for unigqueness is to normalize our class of
polynomials. This is done in a very natural way viz. by considering
only polynomials, if they exist, of the form:

(0-1) P(mly Loy ¢y Ly y) = Am(wly ety xk)ym
+ A, (- Y™ e + Ay(-++)
for which A,(x, @, ---, ;) is the best polynomial approximation to

zero on I, X I, X «++ X I,. Thus if k¥ =1, we consider only polynomials
of the form:

(0.2) Py, y) = T (@)y™ + A, )y + <o+ + Afx) .

We find in the case of (0.2) that there is a unique best polynomial
approximation and it is given by T.(x,)T.(y). Thus we can consider
the question of existence, uniqueness and constructability of a polyno-
mial of the form:
(0'3) P(xly w29 y) = T’nl(xl) Tn2(x2)ym

+ A, (@, x)Y" T A e+ A, 7)
that best approximates zero. We find in this case there is a unique

best polynomial approximation and it is given by Tnl(xl)f’%z(xz)f’m(y).
Continuing in this way we shall show that the question is meaning-
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ful in general and that there is a unique best polynomial approxima-
tion to zero of the form (0.1) given by T, (x)T, (@) -+ T, (=) T.(®).

The uniqueness and constructability are the most surprising results,
since as Buck [1] has shown, F'(z,y) = xy has amongst those polyno-
mials of the form

(@, Y) = a, + a,(x + y) + a2’ + %)
infinitely many polynomials of best approximation which are given by:

afh+Bfi, a=z0, =0, a+p=1

where
1 1
(x, :_xz 2 - —,
Silx, ) 2( + ) 1
ﬁ(x,y)——x+y~—;(x’+y2)——i‘-

We shall finally normalize the polynomials in a different way and
show by construction, the existence of a polynomial, of best approxi-
mation in this class. However in this case the question of uniqueness
remains open.

1. NoTATION. Let #,, %, -+-,n, be positive fixed integers. Let
o be the finite set of vectors {(x.;, s, **+, ®x;,)}, Where j,, J,, «-+, Ji
are integers with 0 <7, <7,0=7, =< N, +-+,0 = 5. = n,; and where
also —1=u2,; =1, -1sx;,=<1,---,-1=,; =1 and no two of
the »,; are the same, no two of the w,; are the same, ---, no two
of the w,; are the same. Let Q(z,y) = Q(®, @, -+, 2, y) be any
polynomial in @,,%,, +-+,2, and y of degree=mn,+n,+ - +n,+m—1
where @ is of degree < n, in #,,s =1,2, ---, k and of degree < m in
9. Let 7 be the set of all such polynomials. Thus if Q(x, %) is in =«

Q®, Y) = Pu(@)Y™ + Dua(@)y™ " + <+ + Do)
where p,(x) is a polynomial in «,, %, «--, x, of
degree < n;, + ny+ oo +m, — 1

and p,(x), 0 < s =< m — 1, are polynomials of degree =< n, 4+ n, + «++ + n,
in @, z, +++, 2,. Let

Alp,; T, 0] = rglin [ 7172 o o 0 B — Pu(@q, Tyy 2+, T) |
¢ in o

which does not depend on the particular @, but only on the class @
and the leading coefficient polynomial of .
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THEOREM 1. If Q(x, ) is any polynomial in ® and if o is any
.set of the type described above them

max | ey <« - TpY™ — QX oy c 00, X, Y) | = Alp,; T, 01287
—1s2zgs1
—1=5y<1

Proof. Assume not. Then there exists a @*(x, y¥) in 7 and a set
.0 of the type described such that:

max |apa «- - o™ — Q% (2, v)| < Alp,; w, ol2t"
——1§x3§1
—1=y=<1

consider the polynomial:
P(x, y) = afwg? -« - apky™
— Q*(, y) — [wp2 -+ 2 — p,(@)] T, (v)
where p,(x) is the coefficient of y™ in Q@*(x, y) and where
(1) T (y) = 27 "T, (y) = 2™ cos [m arc cosy] .

Then P(x, y) is a polynomial of degree < m — 1 in y and thus can be
written:

P@,y) = ¢ua(@)y" " + ¢uo@)y™ " + + o0 + ()

where ¢,(x), 0 = s = m — 1, are polynomials in x,, ,, -+, 2, of degree
S F gt e+ M
Let (%, 2., =+ +, ®i;,) belong to o and y, be one of the points

rr .
y,:cos—m—, 0=r=m, 7 =integer.

Then T.(y,) = (—1)2"™ and we can show that the sign of
P[xlilr xzi;; ) xkiky yr]

is the same as the sign of —[a} -++ a3t — 2, (W, «++, 25 Tolw,).
To see this note that:

I Tm(yr) | I {X/';lel cee x:;ck - pm(xlfly ) xkjk) |
n1

= |y, - x:fk - pm(xu‘ly ) mljk) | 2™
= Alp,; m, g]27™ .

But by the assumption

max |}t .- 2py" — Q*(x, y) | < Alp,; 7, o]2t ™
- x <
o5s

:and thus a fortiori
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|@if, =+ @b yr — Q@*(@wy, =0, iy Un) | < Alp; 7, 0127

If we fix © in o then P(x, y) is a polynomial of the one variable
y and of degree = m — 1. And as y takes on the values y, = cos (77/m),
P(x,y) changes sign m + 1 times. Thus P(x, ¥) has m zeros, which
means ¢, (x) =0, ¢, _(x) =0, -+, g(x) = 0 since P(x,y) is only of
degree < m — 1.

Since & was an arbitrary point of ¢, then

qs[xljly m2i29'°'yxkik]:0$ 0=s=m—1

where 0 =j, =0, 0 = j, = 0y, +++,0 = j, = n. But ¢,(x) is a polyno-
mial of degree < n, in x,, of degree < m,in x,, ---, of degree < u, in 2,
and thus

qs[xlywb...yxk]z(), 0§S§m—1.

From which we see P(x,y) = 0 and thus:

TP oo XTRY™ — Q*(x, ’y) = [w{'l oo XYk — pm(x)] Tm(y) .
But clearly:

max [t apr — p,(@) || T(w) | = Alp,; 7, o]2 "
ns
which is a contradiction and thus the theorem is proved.
Let us now consider the subset of polynomials 7w, of @ for which
Q(x, y) belongs to w and p,(x) = 0. Then by the above theorem, a.
lower bound for the maximum is

A[0; 7w, 0] = min [@f1 -« afk| < 1

which clearly depends on the set ¢. We shall next show that for
this subset 7, we get a lower bound for the maximum that is in-
dependent of ¢ and moreover the lower bound is larger than A[0; x, o]
for all ¢, namely it is unity. In the third theorem we shall show
that unity is the best possible lower bound i.e. there is a polynomial
in 7, for which the maximum is 2™,

THEOREM 2. Let Q(z,y) be any polynomial in =, then

max [90;”90?2 ccc 9073"?/’" - Q(xlv %y ety xk! yl g 21——m .
—1sx5=1
—1=y=<1

Proof. By contradiction. Assume there exists a Q(x,, « -, %, Yy
in @, such that:

max |apap? -« kY™ — Q@ <0, Ty, Y) | < 277
—1=zg=<1
—1=y<1
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Then there exist d,’s, 1 =s=<Fk,1 >4, >0 such that:

k
max |apt e wpry™ — Q@y, o0, @y, y) | < 27 L 0Fs .
—1szg=<1 s=1
—1=y=<1

Let T (y) be given by (1) and consider the polynomial
P(xlv °* .’xk,y) = x;bl. . xzkym_Q(xly ¢ '9xk,y)—xibl e 9075" ~m(y) .
P(x,, ---,2,,9) is a polynomial of degree<m — 1 in y and of degree = n,

inx, 1=<s=k.
Let o* = {(®.,, @iy, *+*, ¥15,)} Where 7, -+, 7, are integers with

O§j]§nl+1,0§j2§n2+1y..'yoéjk§%k+l;
61<x1j1§_1762<x2j2.§1;‘.',5k<xkjk§1

and the z,; are distinet, ---, the x,; are distinct.
Note that for » in ¢*, the sign of P(w, -+, ), ¥) is the same
71

as the sign of —a7j --- xﬁiikf‘m(y,) for y, = cos (rx/m), r = 0,1, «-+, m.

This follows from the fact that:

n1

k
! xlh ce x:;cky;n - Q(xlv sy Lpy yr)| < 2 ];.[1 5:3

and the fact that:
n n T k n k
@y e Doy, | = 270 T e, > 207 11 %

Thus we conclude that P(x,;, ---, s, ¥) has m + 1 sign changes
for (2,5, +-+, ;) in 0*. Let us write

P@,Y) = 0pao®)yY™ " + Dps@)y™ > + 2o+ + po(x)

where p,(x), 0 < s = m — 1, are polynomials of degree <m, in x,,0=s=k.
For each x in ¢*, P(x, y) has m + 1 sign changes and thus p,_.(x) =0,
Ppaof@) = 0, +++, py(x) = 0 for each a in o*. If for (x,;, ®syy *+*, Tus,)
in 0%, we fix all but the first component, we get », + 2 values in o*
for which p,(x) =0,0 < s < m — 1, but these p,(x) are of degree < n,
in », and thus p,(@,, ®,, sy, **, ¥i5,) = 0 for all real »,. Continuing
in this way, we see that p,(x;, 2,, +++, x,) = 0 for all (x,, x,, + -, z.), ®,
real. Thus:

P(xlr xz, .°’,mk9 y) = O
for all real x, and real y. Thus

ot eee wpk T (y) = @t o v e ApRY™ — QY oo 0, Ty, Y)

But
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max |t -« a7 (y) | = 20
—1s2gs1
—1sy=<1

which gives a contradiction and the theorem is proved.

2. Normalization of competing polynomials and construction:
of the best polynomial. We shall now consider a subset 7(8) of the:
set of polynomials 7. We shall then answer the question of existence,
uniqueness and constructability of the best polynomial approximation
in the maximum norm to zero within this class 7(8) on the cube

—1=2,=1,¢¢¢, -1=2, =1, —-1=y=1.

It is apparent from Theorem 1, that if we want uniqueness independent
of o, it is necessary to consider some subset of .

DEFINITION. A polynomial

Q(w’ y) = pm(xlv Lay ** ) xk)ym
+ pm—l(xly x2v tt xk)ym—l + s+ po(xlr Lgy = *, mk)

which is in © and for which
CPgs e e ok — Po(@y, By 000 3) = T, (@) Toy(@s) o+ T ()

is said to be in 7(B).

LEMMA. Let q(y) be a polynomial in y, let y, >y, > +++ > Y,
be any set of real numbers for which

) =0,9() =20,9(,) =0, ++- (—=1)"q(y,) = 0.

Then q(y) has m zeros including multiplicities on [Y,, ¥,.]-

Proof. (by induction);: For m = 1 obvious. Assume theorem to-
be true for m =< k. Let y, >y, > 9y, > *++ > ¥, be any set of real
numbers such that

qW) =0,9(y) =0, -++ (—D*q(y) = 0, (—1)""q(y4,) = 0.

Case 1. q(y,) # 0 for some 1 <s=k. Then by the induction
hypothesis ¢(y) has s zeros on [y, ¥,] and has k + 1 — s zeros on
[¥., Yei:]. But q(y,) # 0 thus ¢(y) has s zeros on y, < y < ¥, and thus.
g(y) has s+ (k + 1 —s) =k + 1 zeros on [¥,, Yi+il-

Case 2. q(y,) < 0. Then unless ¢(y,) = 0for 1 =<s <k we are in
Case 1 and we are finished. Therefore, assume q(y,) =0,1 <s = k.
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We may as well assume q(y) < 0 on (y,, ¥,) since if not then ¢(y) has
a zero there because q(y,) < 0, and we are finished. Also, we may as
well assume q(y) > 0 on (v, ¥,) since if not and ¢(y) has no zeros on
(Y., ¥,) (f does have a zero then we are finished) then since q(y,) < 0
and q(y,) = 0, we must have that ¢(y) has 2 zeros in (¥,, ¥,), continu-
ing in this way we see that we may as well assume that (—1)°q(y) < 0
on (¥, Ys+1) for 0 < s < k. In particular (—1)*q(y) < 0 for ¥ on (¥, Yrsv)-
But by assumption (—1)*"'q(y,+,) = 0. Thus by the continuity of q(y),
we have q(y,+.) =0 and q(y,) =0 for 1=s=<k+ 1 ie.q(y) has k +1
zeros on [y, Yl

Case 3. q(y,) = 0 proof is obvious making use of Case 1.

THEOREM 3. There exists a unique Q*(zx, y) in 7(B) such that

max | aman? <. xy™ — Q*(x, y) |
—1=s2¢s1
—1=y=s1

is a minimum. Moreover:

Q @, y) = =T, (@) T (@) + - T, (@) To(y) + 21232 « -+ apiy™ .

Proof. FEuxistence by construction. Let the ¢ of Theorem 1 be
the special set of vectors

a(B) = {(®1iyy oy v+, xkik)}
where
Tyj, = €08 (J1TT/N), Tajyy =+ +, Lyj, = €08 (J,70/14)
0=7,=n,0=75.=my,--,0=J, = n .

Then

Alp,., 7(B), 6(B)] = xglfyr(lﬁ) [a7ip2 oo 27k — D, (s, Tgy ==+, 24) |
= min | T, ()T, @) -+ T, (@)
z in o(B)

—_— 21—n121—n2 cee 21——nk .
Thus by Theorem 1

max | a2 .o LpEy™ — Q(x, ) | = 217M21 " o0 21TMQITm |
—1§x]~§1
—1=y<1

But the polynomial
Q*(w, y) = apays « - apry™ — T, (@) T, @) +++ T () Tuw)
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clearly belongs to 7(8) and

max | xHap? ¢ .o 2hey™ — QF(x, y) | = 2722 4w 212
—1S2gs1
—1l=y<1

Thus Q*(x, y) is a best approximation from the set 7(5)

Uniqueness. Let Q*(x,y) in 7w(B8) be a polynomial of best
approximation and let

P(x,y) = apap -+ apiy™ — Q* =, y) — T, (@) -+ T, (@) T, (»)
= [Pyt «+ - Tfk — PW(R)]Y" — PuaR)Y"TH — <o+ py()
— T @) T (s) <+ T, (@) T, (w)
= Qua®)Y" T+ Q@)Y A o+ qol@)

where q,,_,(%), <+, ¢y(x) are polynomials of degree <n, in 2, 0 =s=<Fk
since Q*(x, y) is in w(R).

Let a* = (xf, o, -+, ) be a fixed but arbitrary element of a(8).
Then we claim that P(x*,y) has m zeros including multiplicities in
[—1,1]. To see this let y, = cos (sm/m), 0 = s = m, then since

ix;knlx;knz e x;:nkym _ Qx(x*’ y)| é 21-—7»121~n2 cee 21—nk21~—m ,
P(x*! y!)) = 0; P(x*; yl) = O; °cc (_l)mP(x*, ym) =0.

By the lemma P(x*,y) has m zeros counting multiplicities for —1 =y <1.
Thus P(x*, y) has m zeros but is only a polynomial of degreem — 1,
thus P(x*, %) = 0. But this holds for all * in ¢(B8), thus P(x,y) =0
and the theorem is proved.
We could formulate Theorem 3 in the following way. Let n(k),
k=1, be the set of polynomials of the form

Q(m’ y) = pm(xly Y mk):x;km-\'-l + pm—l(x)x;cnﬂl-_ll + e + po(x)

which is of degree < », in #,, 1 =< s < k and for which p,(x, --- x,) is
a polynomial that best approximates zero, if such exists, on the cube
LXLX oo XL, [,=[-1,1],1<s=<k.

Theorem 3 alternate. For k =2, 3,4 --+, the following is true:
Statement k. 7wk — 1) is not empty and there exists a unique
M (2, ©gy +*+, Xy, Tpr) in 7T(k) such that:

max l Mk(xly Loy ** %y Xpy xk+1) l
—1szg=1
—~1=y=<1

is a minimum. Moreover:
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M (%1, @y ==+, By Bprn) = Tnl(mj) Tfnz(w2) tee Tnk(xk) Tn,,ﬂ(xknﬂ) .
Proof. Obvious.
Finally we wish to prove:

THEOREM 4. There exists a monic polynomial
P(xl’ °t xkv y) = x;‘l e xﬁkym - Q(xlv ct xky y)

where Q(x,y) belongs to m, that best approximates zero on the cube
L X I, X e+« X Iy, I, =[—1,1]. The polynomial is

apt oo ape T (y) .

Proof. By Theorem 2

max | Py, ««¢, 23k, y)| = 2™,
—1=2gs1
—1=y=<1

But o -« 27T (y) is a monic polynomial of the correct form with

max [ait e e wpel,(y) | = 27",
—1szg=s1
—1sy=s1

Thus the theorem is correct.
The question of uniqueness in this case is an open one.
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