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The following theorem is proved:
If Gi and Gz are locally compact groups, Ai are algebras

of finite regular Borel measures such that L^Gi) g Ai£ ^(Gi)
for i — 1, 2, and T is an isometric algebra isomorphism of Ai
onto A2, then there exists a homeomorphic isomorphism a of
Gί onto G2 and a continuous character χ on Gi such that
Tμ(f) = /<χ(/ oα)) for jueAi and /eC0(G2).

This result was previously known for abelian groups and
compact groups (Glicksberg) and when Ai = Lι(Gi) (Wendel)
where T is only assumed to be a norm decreasing algebra
isomorphism.

A corollary is that a locally compact group is determined
by its measure algebra.

If G is a locally compact group with left Haar measure m, then
the Banach space ^t(G) of finite complex regular Borel measures (the
dual of the Banach space C0(G) of all continuous functions vanishing
at infinity on G) can be made into a Banach algebra by defining multi-
plication of two elements μ, ve ^f(G) to be convolution:

μ*v(f) = J j f(st)dμ(s)dv(t) for fe C0(G) .

The subspace L\G) of all measures absolutely continuous with respect
to m is a closed two-sided ideal and hence a subalgebra.

In [1; Theorems 3.1 and 3.2] it is shown that if Gx and G2 are
either both abelian or both compact, then any algebraic isomorphism
JΓ of a subalgebra Ax of ^(G^ containing L\G^) onto a subalgebra
A2 of ^/f(G2) containing L\G^) which is norm-decreasing on L\G^) has
the form

( * ) Tμ{f) = μ(χ(fo a)) μeAλ fe CQ(G2)

where a is a homeomorphic isomorphism of Gλ onto G2 and χ is a
character on Gx. In this note we shall prove that (*) holds where T
is assumed to be an isometry but Gτ and G2 may be arbitrary locally
compact groups. Our starting point will be the theorem of Wendel
[2; Theorem 1] that any isometric isomorphism T: L 1 ^)—> L1(G2) is
of the form (*).

THEOREM. / / Gλ and G2 are locally compact groups and T is an
isometric isomorphism of a subalgebra Ax of ^/S(G^) containing
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onto a subalgebra A2 of ^f(G2) containing L\G2) then T has the
form (*)• Conversely, the equation (*) defines an isometric isomor-
phism of ^€(β^) onto ^€^(G2) for every choice of a and χ.

L E M M A . 1 Let μ, v e ^t(G). Then μ ±v if and only if \\μ + v\\ =

Proof Suppose μ J_ v. Then there exists a disjoint partition of
G into sets A, B such that | μ \ (B) = \ v \ (A) = 0. Thus

C o n v e r s e l y , a s s m e \\ μ + v \\ = \\ μ - v \\ ^ \\ μ \ \ + \\v \\. L e t μ =

fv + μs where fe L\v) and μs _L v be the Lebesgue decomposition of
μ with respect to v. Then

B u t \ \ μ ± v \ \ = \ \ ( l ± f ) i > \ \ + \\μ.\\ s o || ( 1 ± f)v \\ = \\fv \\ + \\ v | | .

Thus / = 0 a.e. with respect to v hence μ _L v.

Proof of theorem. The converse is an easy verification. Let T
be an isometric isomorphism of Aλ onto A2. We shall show first that
T maps L\G^) onto L\G2) and hence has the form (*) when restricted
to L\G^9 and then that (*) extends to all of A±.

Indeed L\Gi) i = 1, 2 will be shown to be the intersection of all
nontrivial closed left ideals I g A ^ which satisfy
{**) μ e I, ve Ai and i l λ whenever μ _L λ and λ 6 A{ imply y e l .

T and Γ"1 clearly preserve the property of being a closed left
ideal and by the lemma they preserve (**). Thus T maps ^(G^ onto
L\G2).

Now for μ6 L\G^9 the condition vo. Ai and v _[_ λ whenever X e ^
and μ _L λ is equivalent to v < μ. Clearly v < μ implies it, and con-
versely any v satisfying it must be orthogonal to its singular part λ
in its Lebesgue decomposition v = fμ + λ with respect to μ since XG A{.
So ^(Gi) is a closed left ideal satisfying (**). Let I SA{ be any non-
trivial closed left ideal satisfying (**). Then I must contain a nonzero
L1 measure since a*μ e L1 and is nonzero for μ Φ 0 in I and a is a
suitable element in an L1 approximate identity. The total variation
of this measure is absolutely continuous with respect to it, hence in
J. By convolving this with an appropriate L1 approximation to a point

1 I am indebted to George Reid for suggesting this lemma.
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mass, we get a measure ve I strictly positive in a neighborhood of
the identity (the convolution of an L1 and an L°° function is continu-
ous). But there is an L1 approximate identity absolutely continuous
with respect to v, hence in 7. Since I is a closed ideal, L1 gΞ I.

Thus we have (*) holding for all veL\G^. Let μeAlf and
v e L\Gλ). Then μ*v e L\GX) so

\\f(φt))χ(st)dμ(s)dv(t) = T(μ*v)(f) = (Tμ*Tv)(f)

= \\x(t)f(rat)dTμ(r)dv(t)

so (*) holds for μ and all functions in C0(G2) of the form \f(rat)χ(t)dv(t)

where / e CQ{G2) and v^Lι(G^). This class of functions is dense in

C0(G2) since v may be taken in an L1 approximate identity. Thus (*)

holds for all C0(G2) by continuity, which proves the theorem.

COROLLARY. A locally compact group is determined by its measure
algebra.

This corollary was obtained independently by B. E. Johnson (Proc.
Amer. Math. Soc. 1964). His results imply the main theorem under
the hypothesis that each A{ contains all point masses.
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