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ON THE GENERALIZED F. AND M.
RIESZ THEOREM

P. R. AHERN

Let X be a compact Hausdorff space, C(X) the algebra
of all continuous complex valued functions on X, and let A
be a sup-norm algebra on X, that is, A is a uniformly closed
algebra of continuous complex valued functions on X that
contains the constants and separates the points. If ¢ is a
complex homomorphism of A then let M($) be the set of all
positive, regular, Borel measures on X that represent ¢. If
¢ is a finite, (complex), regular, Borel measure on X then we

write ¢ | A if Sfd/z =0 for all fc A. Let ¢ be a complex

homomorphism of A and m ¢ M(¢), then we say that m sati-
sfies the Riesz theorem if whenever p is a finite, (complex),
regular, Borel measure on X and # | A then z, | Aand g, L A
where p = y, + p, is the Lebesgue decomposition of p with
respect to m. It is quite easy to see that if m e M(¢p) and m
satisfies the Riesz theorem then for all pc M(¢) we have p
is absolutely continuous with respect to m. We will show
that this condition is also sufficient. This is done by means
of a theorem which says that if FF'< X is a compact Gs such
that m(F) =0 for all m e M(¢) then there exists a sequence
fo in A such that |f,1=1 on X, ¢(fn)—1, and f,—0
uniformly on F,

The proof given is not a generalization of the modern proof of
the F. and M. Riesz theorem as given in [4], for instance, but is
closer in form to the original proof of F. and M. Riesz. If X=S,U S,
is the decomposition of X corresponding to the decomposition g =
t. + M, then by means of Theorem 1 we find a bounded sequence in
A that converges to the characteristic function of S, almost every-
where with respect to the total variation of the measure p. It is
known (see Hoffman [4] and Lumer [5]) that if M(¢) = {m} then the
Riesz theorem holds for the measure m. It is known that M(¢) is not
empty [4].

It what follows, all measures are assumed to be finite, regular,
Borel measure, and ¢ is a fixed complex homomorphism of A.

LeEMmA 1. Let {v,} be a sequence of positive measures on X having
the measure m as a weak-star accumulation point. Suppose F &Y
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18 compact and that v.(F) =¢, > 0 for all n. Then m(F) = &,.

Proof. There exists a decreasing sequence of open sets &, 2 F
such that m(¢”, — F)— 0. There exists a sequence w, of continuous
real valued functions such that v, =1 on F,u,=0 on X — ¢, and
0 =<wu, =1 elsewhere. From the construction, u, — X a.e. (m), where
Xr is the characteristic function of /. So we have,

m(F) = S (e — up)dm + gukdvn + g u(dm — dv,) .

be made small by choosing k large, and once k is fixed | u,(dm — dv,)

can be made small by proper choice of n. This proves the lemma.
The proof of the next lemma can be found in [1], Theorem 3.b.

Note that gukdun = v (F) = ¢, for all » and k. Now, S(XF — u,)dm can

LEMMA 2. Let uc C(X) be real valued and suppose

sup {Re 4{g) | Re g = u, g< A}
=v=inf{Re¢(g) | Reg = u, g A}

then there exists pe M(¢) such that Sudp = . In particular, there
exists o, M($) such that

sup (Re d(g) | Beg < u, g A} = gud‘ou.

TurOREM 1. Let FS X be o compact Gs such that m(F) =0
Jor all me M(¢), then there exists a sequence f,€ A such that

) a1 =1 on X,

@) ¢(f,) = "

@) |fulSe™on F.

Proof. Since F is a compact G;, there is a sequence of open sets
{2} such that 2,., S &, and N7, = F. Let € > 0 be given, then
there exists an integer N such that for all » = N, o(Z,) < ¢ for all
pe M(¢). For suppose this were not true, then there would exist
g >0 and sequences 0,€ M(¢) and 7., such that o(7,,) =&, Let
U, = &,, then we have p,(U,) =Z & > 0 and U,.. S U,. The sequence
o, has a weak-star limit point p, and it is well known that pe M(4)
hence o(F) = 0. Fixk, then o(U,) = 0(U,..), now 0,( U) 2 Ou(Ups)) 2
0.(U,) =¢ >0 for all =%+ 1. Therefore by Lemma 1 we have
o(U) = ¢ > 0 for all k. But this contradicts the fact that o(F) = 0.
Hence by proper choice of subsequence we may assume that o(<7,) < (1/n?)
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for all pe M(¢). Now for each n there exists u, € C(X) such that
“,= —n on F,u,=0 on X— 2, and —n < 4, < 0 elsewhere. By
Lemma 2, there exists o, € M(¢) such that

sup (Re #(g) | Reg < u,, g€ A} = Sundpn ,

and hence for each n there exists g,€ A such that Reg, < u, and

gRe g.dm = Sund‘on - _71; > —np (7)) — % > __% )

We may also assume that Slmgndm = 0. If we now define f, = e’ it

follows that
M) [fil=evmzens1

(2) andm = exp [g gndm] = exp [S Re gndm] > g-n

B3) |ful=¢ef" < e on F.

The sequence {f,} of Theorem 1 is bounded in norm by 1, yet
#(f,) — 1. We show that this implies that +(f,)—1 for all 4 in the
same part as ¢. For definition of part see [4]. For this we use a
result of Bishop [2]: if ¢, 4+ are in the same part and m, is a repre-
senting measure for ¢, then there exists a representing measure m.
for + such that my, < Amy for some constant A.

COROLLARY 1. If {f.} is the sequence of Theorem 1 and + is in
the same part as ¢, then +(f,) — 1.

Proof. Let m be a representing measure for 4, and p be a repre-
senting measure for ¢ such that m < Ap for some constant A. Then we

have m = gpo where ¢ is bounded. Since y(f,) — 1 we have X f.do— 1.
This, together with the fact that |f,| =< 1 implies that f,—1 in measure,
with respect to the measure p. Since g is bounded it follows that f,g — ¢
in measure with respect to the measure p. The fact that |f.g| = |g|

now implies that v(f,) = S Fugdo — Sgdp - Sdm ~ 1.

COROLLARY 2. Suppose there ts a measure m < M($) such that
o L m for all pe M(¢), and suppose 'S X is compact and m(F') = 0.
Then there exists a sequence f,c A satisfying (1), (2), (3) of Theorem
1.

Proof. There exists a sequence {¢7,} of open sets such that F' &
o1 & 7, and m(c,) — 0. For each n, there exists a set F, which
is a compact Gy such that F& F, < ~,. Let F;, =N, F,, then F S F,,
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F, is a compact G; and m(F,) = 0. It follows that o(F,) = 0 for all
0 € M(¢). Now apply Theorem 1 to the set F,.

THEOREM 2. Suppose there exists m e M(¢) such that p < m for
all pe M(¢). Let pr 1 A and let p = p, + p, be the Lebesgue decom-
position of p with respect to m. Then p, 1 A and p, 1 A.

Proof. Let S be a Borel set that carries p, and m(S) = 0. Then
there exists an increasing sequence F, & S of compact sets such that
|t (F,)— |, | (S), where |,| denotes the total variation of . For
each F', we have a sequence f,,,€ A such that

O furl =1,

@ |fusdm = .

@) |furl=e™* on F,.
Define h, = f,, then we have:

@) [kl = Funl S 1.
@) [radm = [f.0m = e,

@) bl =|fanlSe™ on F,.
From 1’ and 2’ it follows that %, — 1 in measure with respect to m
and hence we have a subsequence %, —1 a.e. (m). From 3’ we have
h,,—0 a.e. (|¢,). Hence g, = h,,— Yx_s a.e. (2)). So if fe A then
for each &, g,fc A and we have 0 = Sg,,fdy——)g fdp = de‘ua. This
proves the theorem. o

We point out that if the homomorphism ¢ has a representing
measure m such that o€ M(¢) implies o € m then it follows easily
from the result of Bishop mentioned earlier that every ++ that lies

in the same part as ¢ has a representing measure with this same
property.
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