Pacific Journal of Mathematics

CONVOLUTION TRANSFORMS WHOSE INVERSION FUNCTIONS HAVE COMPLEX ROOTS

JOHN DAUNS AND D. V. WIDDER

Vol. 15, No. 2 October 1965

CONVOLUTION TRANSFORMS WHOSE INVERSION FUNCTIONS HAVE COMPLEX ROOTS

JOHN DAUNS AND DAVID V. WIDDER

The convolution transform is defined by the equation

(1.1)
$$f(x) = \int_{-\infty}^{\infty} G(x-t)\varphi(t)dt = (G*\varphi)(x).$$

If the kernel G(t) has a bilateral Laplace transform which is the reciprocal of an entire function E(s), then E(s) is called the inversion function of the transform. This terminology is appropriate in view of the fact that the transform (1.1) is inverted, in some sense, by the operator E(D), where D stands for differentiation with respect to x:

$$(1.2) E(D)f(x) = \varphi(x).$$

It is the purpose of the present paper to prove (1.2) when the roots of E(s) are allowed to be genuinely remote from the real axis.

Formula (1.2) was first proved by Widder [7] in 1947 for a large class of entire functions E(s) and by Hirschman and Widder [3] in 1949 for the whole Laguerre-Pólya class. The latter functions have real roots only, indeed are the uniform limits of polynomials with real roots only, see p. 42 of [5].

In 1951 Hirschman and Widder [4] extended this inversion theory, allowing the roots of E(s) to be complex. However, the roots were asymptotically real in the sense that their arguments clustered to 0 or to π . At the same time A. O. Garder [2] allowed the approach to the real axis to be slower. We require only that they should occur in pairs symmetric in the origin and in a sector inside the sector $|\tan{(\arg s)}| < 1$. More precisely:

$$egin{align} E(s) &= \prod\limits_1^\infty \Big(1-rac{s^2}{lpha_k^2}\Big), \sum\limits_{k=1}^\infty a_k^{-2} < \infty \ &|rg a_k| \leqq rac{\pi}{4} - \eta \;, \qquad 0 < \eta < rac{\pi}{4} \;. \end{gathered}$$

We wish also to call attention to some new asymptotic relations.

Received March 18, 1964. Some of this work is part of the first named author's doctoral dissertation at Harvard University. In the preparation of a part of this paper during the year 1962-1963 the first named author was supported by a Graduate National Science Foundation Fellowship (number 22164), and by a grant from the United States Air Force (grant number AF-AFOSR-393-63) during 1963-1964.

If

$$G_{2n}(t)=\prod\limits_{1}^{n}\left(1-rac{D^{2}}{a_{\,
u}^{2}}
ight)G(t)$$
 ,

we show that

$$G_{2n}(t) \sim k(t, v_n) \qquad (n \to \infty)$$

umiformly for $-\infty < t < \infty$. Here k(t, v) is the fundamental solution of the heat equation,

$$k(t, v) = (4\pi v)^{-1/2} \exp(-t^2/4v)$$
,

with $-\infty < t < \infty$, with $Re \ v > 0$, with the square root one-at-one, and where v_n is given by

$$v_n = \sum\limits_{n=1}^{\infty} a_k^{-2}$$
 .

In order to establish (1.3) we are obliged to make an additional assumption on the distribution of the roots of E(s), see Condition B in § 4.

As a consequence of (1.3) we prove that

$$(1.4) \qquad \qquad \int_{-\infty}^{\infty} |G_{2n}(t)| dt \sim (\cos^2 \varphi_n - \sin^2 \varphi_n)^{-1/2} \qquad \qquad (n \to \infty) ,$$

where $\varphi_n = (1/2) \arg v_n^{-1}$. This result tends to indicate that present methods cannot be employed for the inversion of (1.1) if the roots of E(s) lie outside the 45° sector used above.

Finally we compute explicitly the functions $G_{2n}(t)$ corresponding to $E(s) = \cos \alpha s$ where $|\arg \alpha| < \pi/2$. Here all roots lie on a line through the origin. In this case the integral (1.4) tends to infinity with n when $|\arg \alpha| \ge \pi/4$. This result indicates clearly that our arguments must fail if the roots of E(s) are not restricted to lie inside the 45° sector.

2. A first inversion theorem. Let us introduce the following conventions.

Condition A. The sequence a_1, a_2, \cdots of complex constants satisfies Condition A if

$$\sum\limits_{1}^{\infty} \mid a_{k}\mid^{-2} < \infty \quad ext{and} \quad \mid rg \ a_{k}\mid \leqq rac{\pi}{4} - \eta$$

for some η in $0 < \eta < \pi/4$. It is assumed that the a_k are arranged in an order of nondecreasing real parts with $Re a_1 > 0$, i.e.

$$0 < Re \ a_1 \leqq Re \ a_k \leqq Re \ a_{k+1}$$
 $(k = 1, 2, \cdots)$.

DEFINITION. The class of entire functions A consists of all entire

functions E(s) of the form

$$E(s) = \prod\limits_{1}^{\infty} \left(1 - rac{s^2}{a_k^2}
ight)$$

where the roots a_k satisfy condition A.

For example, $\cos(2+i)s$ belongs to the class A.

We now state the main theorem of the present section, a result that will be improved in § 3 by more complicated methods.

Theorem 2.1. If for $-\infty < t < \infty$

1.
$$G(t) = \frac{1}{2\pi i} \int_{-i\infty}^{i\infty} \frac{e^{st}}{E(s)} ds \qquad (E(s) \in A) .$$

2. $\varphi(t)$ is bounded on compact sets and

$$arphi(t) = O(e^{\sigma |t|})$$
 $(\mid t \mid
ightarrow \sim$, $0 < \sigma < Re \ a_{\scriptscriptstyle 1})$.

3.
$$f(x) = \int_{-\infty}^{\infty} G(x-t)\varphi(t) dt,$$

then

$$\lim_{n\to\infty} \prod_{1}^{n} \left(1 - \frac{D^{2}}{a_{k}^{2}}\right) f(x) = \varphi(x)$$

at any point t = x of continuity of $\varphi(t)$.

We shall establish this result by the series of Lemmas 2.2, 2.3, and 2.4.

Consider a fixed function E(s) in the class A. Then let $E_{2n}(s)$ be defined by

(2.1)
$$E_{2n}(s) = \prod_{n+1}^{\infty} \left(1 - \frac{s^2}{a_k^2}\right)$$
 $(n = 0, 1, 2, \cdots)$.

Define S_n by

(2.2)
$$S_n = \sum_{k=1}^{\infty} |a_k|^{-2}$$
 $(n = 0, 1, 2, \cdots)$.

Let $G_{2n}(t)$ and G(t) be defined by

$$G_{2n}(t) = \frac{1}{2\pi i} \int_{-i\infty}^{i\infty} \frac{e^{st}}{E_{2n}(s)} ds , \quad G(t) = G_0(t)$$

$$(-\infty < t < \infty; n = 0, 1, 2, \cdots).$$

If $P_{2n}(D)$ is defined as

(2.4)
$$P_{2n}(D) = \prod_{1}^{n} \left(1 - \frac{D^{2}}{a_{\nu}^{2}}\right) \qquad (n = 0, 1, 2, \cdots),$$

then the next lemma will show that the integral (2.3) converges, that

$$P_{2n}(D)G(t) = G_{2n}(t) ,$$

and furthermore it will give lower bounds of the function $E_{2n}(s)$ in terms of both s and n. It will become clear later that exactly these lower bounds are the ones needed to obtain the required information about the kernels $G_{2n}(t)$.

LEMMA 2.2. Let the roots $a_k = r_k e^{i\beta_k}$, η , $E_{2n}(s)$, and S_n be as in Condition A and equations (2.1) and (2.2).

A. Let $re^{i\theta}$ with r>0 be any point in the angular sector defined by

$$|\tan \theta| \ge \tan \left(\frac{\pi}{2} - \frac{\eta}{2}\right)$$
.

Then

$$|E_{\scriptscriptstyle 2n}(re^{i heta})| \geqq 1 + r^{\scriptscriptstyle 2}S_{\scriptscriptstyle n}\sin\eta$$

and also

$$|E_{\scriptscriptstyle 2n}(re^{i heta})| \geq 1 + r^4 \sin^2\eta \sum_{\scriptscriptstyle n \leq i \leq m} r_i^{-2} r_j^{-2}$$
 .

B. Define K to be the constant

$$K=rac{1}{2}\sinrac{\eta}{2}$$
 .

Let n be arbitrary, $n = 0, 1, 2, \dots$, but fixed. Let $re^{i\theta}$ with r > 0 be any point in the triangular region defined by the inequalities

$$| an heta| \leq an\left(rac{\pi}{2} - rac{\eta}{2}
ight)$$
, $|r\cos heta| \leq KS_n^{-1/2}$.

Then

$$||E_{\scriptscriptstyle 2n}(re^{i heta})|| \geq rac{2}{3}$$
 .

Proof. A typical term of the infinite product $E_{2n}(re^{i\theta})$ satisfies

$$[1-r^2r_k^{-2}e^{2i(heta-eta_k)}][1-r^2r_k^{-2}e^{-2i(heta-eta_k)}]=1-2r^2r_k^{-2}\cos2(heta-eta_k)+r^4r_k^{-4}$$
 .

Since in case A, the argument θ satisfies either $\pi/2 - \eta/2 \le \theta \le \pi/2 + \eta/2$ or $-\pi/2 - \eta/2 \le \theta \le -\pi/2 + \eta/2$, and since the argument β_k of any

root satisfies $-\pi/4 + \eta \le -\beta_k \le \pi/4 - \eta$, it follows that in case A we have $-\cos 2(\theta - \beta_k) \ge \sin \eta$. Consequently, by multiplying out the infinite product, we obtain

$$|\,E_{\scriptscriptstyle 2n}\!(re^{i heta})\,| \geqq \prod\limits_{\scriptscriptstyle n+1}^{\scriptscriptstyle \infty} 1 \,+\, r^{\scriptscriptstyle 2} r_{\scriptscriptstyle k}^{\scriptscriptstyle -2} \sin \gamma \,> 1 \,+\, r^{\scriptscriptstyle 2} S_{\scriptscriptstyle n} \sin \gamma$$
 .

Similarly, we also obtain the second inequality in A.

For the proof of B, take k > n and restrict $re^{i\theta} = \sigma + iy$ to the angular sector $|y| \le |\sigma| \cot \eta/2$. By using the latter inequality, we see that a typical term of the infinite product $E_{2n}(\sigma + iy)$ has the lower bound

$$\left|\,1-rac{(\sigma+iy)^{\scriptscriptstyle 2}}{r_{\scriptscriptstyle k}^{\scriptscriptstyle 2}e^{2ieta_k}}\,
ight| \geq 1-rac{\sigma^{\scriptscriptstyle 2}+y^{\scriptscriptstyle 2}}{r_{\scriptscriptstyle k}^{\scriptscriptstyle 2}} \geq 1-rac{\sigma^{\scriptscriptstyle 2}}{r_{\scriptscriptstyle k}^{\scriptscriptstyle 2}}\Big(1+\cot^{\scriptscriptstyle 2}rac{\eta}{2}\Big)$$
 .

This latter lower bound is positive. The inequalities $r_k^2S_n>1$ and $\mid\sigma\mid \leq KS_n^{-1/2}$ imply that

$$rac{\sigma^2}{r_{\scriptscriptstyle k}^2} \Bigl(1 + \cot^2rac{\gamma}{2} \Bigr) = rac{\sigma^2}{4^2 K r_{\scriptscriptstyle k}^2} < rac{1}{4}$$
 .

By use of the latter and by multiplying out the infinite product we obtain

$$|E_{\scriptscriptstyle 2n}\!(\sigma+iy)|>1-\sum\limits_{\scriptscriptstyle p=1}^{\infty}4^{-p}S_{\scriptscriptstyle n}^{-p}\sum\limits_{\scriptscriptstyle n< k(1)<\cdots< k(p)<\infty}m{r}_{\scriptscriptstyle k(1)}^{-2}\cdotsm{r}_{\scriptscriptstyle k(p)}^{-2}$$
 ,

where the indices $k(1), \dots, k(p)$ range over the integers.

Use of the inequality

$$\sum_{n < k(1) < \cdots < k(p) < \infty} r_{k(1)}^{-2} \cdots r_{k(p)}^{-2} < S_n^p$$

leads to

$$\mid E_{\scriptscriptstyle 2n}(re^{i heta})\mid \ \geq rac{2}{3}$$
 .

Thus conclusion B has been established.

The next lemma gives some facts about the kernels $G_{2n}(t)$. Once the lower bound given by part A of last lemma is available, the next lemma can be proved exactly as in the case of real roots a_k , see [6; p. 265] and [5; p. 108]; we omit the proof.

LEMMA 2.3. Let $E_{2n}(s)$, $G_{2n}(t)$, and $P_{2n}(D)$ be defined by (2.1), (2.3) and (2.4). In particular, the roots a_k defining $E_{2n}(s)$ satisfy condition A, and consequently

$$0 < Re \ a_k \leq Re \ a_{k+1}$$
 $(k = n+1, n+2, \cdots)$.

Let $n = 0, 1, 2, \cdots$ be arbitrary.

A. For any σ in $|\sigma| < Re \, a_{n+1}$,

$$G_{\scriptscriptstyle 2n}(t) = P_{\scriptscriptstyle 2n}(D)G(t) = rac{1}{2\pi i} \int_{\sigma-i\infty}^{\sigma+i\infty} rac{e^{st}}{E_{\scriptscriptstyle 2n}(s)} \, ds$$
 .

B. Let a_n as a zero of $E_{2n}(s)$ be of multiplicity $\mu+1$. Then there is a polynomial p(t) of degree μ such that for any k in $-Re\,a_{n+1} < k < Re\,a_{n+1}$ and any integer $\nu=0,1,2,\cdots$ the following holds

$$\Big(rac{d}{dt}\Big)^{\!
u}G(t)=\Big(rac{d}{dt}\Big)^{\!
u}[p(t)e^{-|t|a_{n+1}}]+\mathit{O}(e^{-k|t|})\,, \qquad \qquad (|\,t\,|
ightarrow\,\infty)\,\,.$$

C. For all $s = \sigma + i\tau$ with $|\sigma| < Re \, a_{n+1}$ and $-\infty < \tau < \infty$

$$rac{1}{E_{_{2n}}(s)}=\int_{-\infty}^{\infty}\!\!e^{-st}G_{_{2n}}\!(t)\;dt\;,\qquad \int_{-\infty}^{\infty}\!\!G_{_{2n}}\!(t)\;dt=1\;.$$

In the next lemma a sufficiently good upper bound of the kernel $G_{2n}(t)$ in terms of both t and n is proved in order to have an inversion formula as an immediate consequence.

LEMMA 2.4. Let $G_{2n}(t)$ and S_n be as defined by equations (2.3) and (2.2). Then there exist constants M and K independent of both n and t such that

Proof. Use of the fact that $G_{2n}(t)$ is an even function of t and use of Lemma 2.3 shows that

$$G_{\scriptscriptstyle 2n}\!(t) = rac{1}{2\pi} \int_{-\infty}^{\infty} \! rac{e^{-(\sigma + iy)\,t}}{E_{\scriptscriptstyle 2n}\!(\sigma + iy)} \, dy$$

provided σ satisfies $0<\sigma< r_{n+1}\cos\beta_{n+1}$ (where $r_{n+1}e^{i\beta_{n+1}}$ is that root of $E_{2n}(s)$ with smallest positive real part). Let K be as in Lemma 2.2 the constant $K=(1/2)\sin{(\eta/2)}$. Assume for the rest of the proof that σ is restricted to $0<\sigma \le KS_n^{-1/2}$. Then since $\cos\beta_{n+1}>1/\sqrt{2}$, it follows that

$$0<\sigma \leq (1/2)\sin{(\eta/2)}r_{\scriptscriptstyle n+1} < r_{\scriptscriptstyle n+1}\cos{eta}_{\scriptscriptstyle n+1}$$
 .

By setting $A = \tan (\pi/2 - \eta/2)$ and using the lower bounds of Lemma 2.2 we obtain

$$|G_{2n}(t)| \leq rac{3A}{2\pi} \, \sigma e^{-\sigma t} + rac{e^{-\sigma t}}{\pi} \int_{\sigma_{\mathcal{A}}}^{\infty} rac{1}{1+y^2 S_n \sin \eta} \, dy$$
 .

Replace the lower limit σA in the last integral by 0, set $\sigma = KS_n^{-1/2}$

and let M be the constant $M=3AK/2\pi+(1/2)(\sin\eta)^{-1/2}$. Since $G_{2n}(t)$ is an even function, the last inequality shows that for all n and t, the function $G_{2n}(t)$ satisfies the conclusion of the theorem

$$|\,G_{\scriptscriptstyle 2n}(t)\,| \leqq MS_{\scriptscriptstyle n}^{\scriptscriptstyle -1/2} \exp{(-KS_{\scriptscriptstyle n}^{\scriptscriptstyle -1/2}\,|\,t\,|)}$$
 .

REMARK. In the previous lemma the constants M and K are functions of η only. As η tends to 0, M tends to ∞ and K tends to 0, thus making the upper bound of the theorem meaningless as η tends to 0. These are phenomena which are typical of the theory and which we will encounter again.

Now we are in a position to prove Theorem 2.1.

Proof. By letting M_0 be the constant guaranteed by hypothesis 2 of Theorem 2.1, i.e. for any fixed x and all t,

$$|\varphi(x-t)-\varphi(x)| \leq M_0 e^{\sigma|t|}$$
,

and by using Lemma 2.3 we find that for any $\delta > 0$

$$egin{aligned} \mid P_{\scriptscriptstyle 2n}(D)(G*arphi)(x) - arphi(x) \mid & \sup_{\mid t \mid < \delta} \mid arphi(x-t) - arphi(x) \mid \int_{-\infty}^{\infty} \mid G_{\scriptscriptstyle 2n}(t) \mid dt \ & + M_0 \int_{\delta < \mid t \mid < \infty} \mid G_{\scriptscriptstyle 2n}(t) \mid e^{\sigma \mid t \mid} \, dt \; . \end{aligned}$$

Replacement of $|G_{2n}(t)|$ by its upper bound given by Lemma 2.4,

$$\mid G_{\scriptscriptstyle 2n}(t) \mid \ \leq M S_{\scriptscriptstyle n}^{\scriptscriptstyle -1/2} \exp\left(-K S_{\scriptscriptstyle n}^{\scriptscriptstyle -1/2} \mid t \mid
ight)$$
 ,

and use of the continuity of $\varphi(t)$ at t=x immediately give the theorem.

3. A second inversion theorem. We now remove the boundedness condition on $\varphi(t)$, assumed in Theorem 2.1, assuming here instead only local integrability. The inversion formula will be valid not only at points of continuity of $\varphi(t)$ but at all points of the Lebesgue set for that function.

THEOREM 3.1. If G(t) and f(x) are defined as in Theorem 2.1 with $\varphi(t) \in L^1$ in every finite interval and if

then

$$\lim_{n\to\infty}\prod_{1}^{n}\left(1-rac{D^{2}}{a_{k}^{2}}
ight)f(x)\!=\!arphi(x)$$

for all x in the Lebesgue set for $\varphi(t)$.

We first prove a result about the derivative of $G_{2n}(t)$.

LEMMA 3.2. Let the roots $a_k = r_k e^{i\beta_k}$, η , $G_{2n}(t)$, and S_n be defined by Condition A and equations (2.3) and (2.2). Then there exist constants M_1 , K_1 , M_2 , and K_2 independent of both n and t such that for all $n = 0, 1, 2, \cdots$ the following holds:

A. If
$$n$$
 satisfies $S_n \geqq 4r_{n+1}^{-2}$, then $|G_{2n}'(t)| \leqq M_1 S_n^{-1} \exp\left(-K_1 S_n^{-1/2} \, |t|
ight)$ $(-\infty < t < \infty)$.

B. If
$$n$$
 satisfies $S_n < 4r_{n+1}^{-2}$, then $|G_{2n}'(t)| \leq M_2 r_{n+1}^2 \exp\left(-K_2 r_{n+1} \mid t\mid\right)$ $(-\infty < t < \infty)$.

Proof. First conclusion A will be proved. Let K be the constant

$$K=rac{1}{2}\sinrac{\eta}{2}$$
 .

Restrict σ to $0 < \sigma \le KS_n^{-1/2}$. The latter guarantees that $0 < \sigma < r_{n+1}\cos\beta_{n+1}$ and hence $G'_{2n}(t)$ is given by

$$G_{2n}'(t)=-rac{1}{2\pi}\int_{-\infty}^{\infty}rac{e^{-(\sigma+iy)t}(\sigma+iy)}{E_{2n}(\sigma+iy)}\,dy$$
 .

With $A = \tan (\pi/2 - \eta/2)$, the above becomes

$$egin{align} (1) & |G_{2n}'(t)| & \leq rac{e^{-\sigma t}}{2\pi} \int_{-\sigma A}^{\sigma A} rac{\sigma + |y|}{|E_{2n}(\sigma + iy)|} \, dy \ & + rac{e^{-\sigma t}}{2\pi} \int_{\sigma A < |y| < \infty} rac{\sigma + |y|}{|E_{2n}(\sigma + iy)|} \, dy \; . \end{split}$$

The assumption that $S_n \ge 4r_{n+1}^{-2}$ guarantees that $S_n - r_k^{-2} \ge 1/2 S_n$ for all k > n. Hence the second lower bound given by part A of Lemma 2.2 becomes

$$egin{align} |E_{\scriptscriptstyle 2n}\!(\sigma+iy)| & \geq 1+rac{1}{2} \ y^4 \sin^2\eta \sum_{\scriptscriptstyle k=n+1}^\infty rac{1}{r_{\scriptscriptstyle k}^2} \Big(S_{\scriptscriptstyle n}-rac{1}{r_{\scriptscriptstyle k}^2}\Big) \ & \geq 1+\Big(rac{1}{2} y^{\scriptscriptstyle 2} S_{\scriptscriptstyle n} \sin\eta\Big)^{\! 2} \ . \end{split}$$

Use of the last inequality and the estimate of part B of Lemma 2.2 in equation (1) gives

$$|G_{2n}'(t)| \le rac{3}{2\pi}A(1+A)\sigma^2e^{-\sigma t} + rac{e^{-\sigma t}}{\pi}\int_{\sigma_A}^{\infty} rac{\sigma+y}{1+\left(rac{1}{2}y^2S_n\sin\eta
ight)^2}dy \;.$$

Replace the limit σA by 0 in the last integral; define the constants c_1 and c_2 as

$$c_{\scriptscriptstyle 1} = \int_{\scriptscriptstyle 0}^{\scriptscriptstyle \infty} rac{1}{1+u^{\scriptscriptstyle 4}} \, du \; , \qquad c_{\scriptscriptstyle 2} = \int_{\scriptscriptstyle 0}^{\scriptscriptstyle \infty} rac{u}{1+u^{\scriptscriptstyle 4}} \, du \; ;$$

let K_1 and M_1 be the constants

$$K_{\scriptscriptstyle 1} = K$$
 , $M_{\scriptscriptstyle 1} = rac{3}{2\pi} A (1+A) K^{\scriptscriptstyle 2} + rac{c_{\scriptscriptstyle 1} \sqrt{2}}{\pi} (\sin \eta)^{\scriptscriptstyle -1/2} K + rac{2c_{\scriptscriptstyle 2}}{\pi \sin \eta}$,

and set $\sigma = KS_n^{-1/2}$. Then equation (2) gives

$$|G'_{2n}(t)| \le M_1 S_n^{-1} \exp\left(-K_1 S_n^{-1/2} |t|\right)$$

for all t and all n satisfying $S_n \ge 4r_{n+1}^{-2}$.

For the proof of part B, $G_{2n}(t)$ has to be expressed in the form

(3)
$$G_{2n}(t) = (g * G_{2n+2})(t)$$

where g(t) is the function

$$g(t) = rac{1}{2} a_{n+1} e^{-a_{n+1}|t|}$$
 $(-\infty < t < \infty)$.

Differentiation of (3) under the integral sign and an integration by parts gives

$$G_{2n}'(t) = -rac{lpha_{n+1}^2}{2} \int_{-\infty}^{\infty} rac{u}{\mid u\mid} e^{-a_{n+1}\mid u\mid} G_{2n+2}(t-u) \, du \, .$$

By use of the estimate

$$|G_{2n+2}(t)| \le MS_{n+1}^{-1/2} \exp(-KS_{n+1}^{-1/2} |t|)$$

of Lemma 2.4, equation (4) becomes

$$egin{align} (5) & |G_{2n}'(t)| \ & \leq rac{1}{2} M r_{n+1}^2 \! \int_{-\infty}^{\infty} \exp \left(-rac{1}{\sqrt{2}} r_{n+1} \! |u|
ight) \! S_{n+1}^{-1/2} \exp \left(-K S_{n+1}^{-1/2} \! |u-t|
ight) du \; . \end{split}$$

By integrating equation (5) by parts we obtain

$$\begin{array}{ll} (\,6\,) & |\,G_{2n}'(t)\,| \leq M K^{-1} r_{n+1}^2 \exp\left(-\frac{1}{\sqrt{\,2\,}} r_{n+1} |\,t\,|\right) \\ \\ & \frac{M}{2\sqrt{\,2\,}\,K} \, r_{n+1}^3 \! \int_{-\infty}^{\infty} \exp\left(-\frac{1}{\sqrt{\,2\,}} r_{n+1} |\,u\,| - K S_{n+1}^{-1/2} |\,u - t\,|\right) du \;. \end{array}$$

If n satisfies $S_n < 4r_{n+1}^{-2}$ as in conclusion B, then

$$S_{n+1}-r_{n+1}^{-2}=S_n-2r_{n+1}^{-2}<2r_{n+1}^{-2} \quad ext{and} \quad S_{n+1}^{-1/2}>r_{n+1}/\sqrt{3}$$
 .

Substitution of the latter together with the inequality $|t| - |u| \le |u - t|$ in equation (6) gives

$$egin{aligned} (7) & |G_{2n}'(t)| & \leq M K^{-1} r_{n+1}^2 \exp\left(-rac{1}{\sqrt{2}} r_{n+1} |\, t\, |
ight) \ & + rac{M}{2\sqrt{2}K} r_{n+1}^3 \exp\left(-rac{1}{\sqrt{3}} K r_{n+1} |\, t\, |
ight) \!\! \int_{-\infty}^{\infty} \exp\left(-rac{\sqrt{3} - K \sqrt{2}}{\sqrt{6}} r_{n+1} |\, u\, |
ight) du \; . \end{aligned}$$

Let M_2 and K_2 be the constants

$$M_{\scriptscriptstyle 2} = M K^{\!-1} + M \sqrt{\,3\,} \, K^{\!-1} \! (\sqrt{\,3\,} - K \sqrt{\,2\,})^{\!-1} \,, \qquad K_{\scriptscriptstyle 2} = rac{1}{\sqrt{\,3\,}} K \,.$$

Then equation (7) shows that

$$|G'_{2n}(t)| \le M_2 r_{n+1}^2 \exp\left(-K_2 r_{n+1} |t|\right)$$

holds for all t and all n satisfying $S_n < 4r_{n+1}^{-2}$. Hence conclusion B has been ectablished.

Now we prove Theorem 3.1.

Proof. If $\psi(t)$ is given by

$$\psi(t) = \int_0^t [\varphi(x-u) - \varphi(x)] du \qquad (-\infty < t < \infty)$$
 ,

then by the hypotheses of Theorem 3.1 there is a constant M_0 for which

$$|\psi(t)| < M_0 e^{\sigma |t|}$$
 $(-\infty < t < \infty)$.

If t=x is in the Lebesgue set of $\varphi(t)$ then for any $\varepsilon>0$ there is a $\delta>0$ such that $|\psi(t)|\leq \varepsilon|t|$ for any t in $|t|\leq \delta$. An integration by parts, easily justified by Lemma 2.3, yields

$$|P_{\scriptscriptstyle 2n}(D)(G*arphi)(x)-arphi(x)| \leq arepsilon\!\!\int_{\scriptscriptstyle -\infty}^\infty\!|tG_{\scriptscriptstyle 2n}'(t)|\,dt + M_0\!\!\int_{\scriptscriptstyle \delta<|t|<\infty}\!\!|G_{\scriptscriptstyle 2n}'(t)|\,e^{arphi|t|}dt$$
 .

Replacing $|G'_{2n}(t)|$ by either one of the two upper bounds given by the last Lemma 3.2, we easily obtain the conclusion of the theorem.

4. Asymptotic estimates. For the estimates of the present section we need to place further restrictions on the roots of the inversion function.

Condition B. The sequence of complex constants a_1, a_2, \cdots satisfies Condition A and in addition

$$\lim_{n\to\infty} |a_n|^{4/3} \sum_{n=1}^{\infty} |a_k|^{-2} = \infty$$
.

For example the sequence $a_n=n$ satisfies Condition B. The sequence $a_n=2^n$ satisfies Condition A but not Condition B. In the latter case the above limit becomes

$$\lim_{n \to \infty} 2^{4n/3} \left(\frac{4}{3 \cdot 2^{2n}} \right) = 0$$
 .

DEFINITION. The entire function E(s) belongs to the class of functions B if

$$E(s) = \prod_{1}^{\infty} \left(1 - \frac{s^2}{a_{\nu}^2}\right)$$

where the roots of E(s) satisfy Condition B.

We can now state the principal result of this section. To do so we adopt the notation of §1 for the function k(t, v). Set

$$(4.1) S_n = \sum_{n=1}^{\infty} |a_k|^{-2}$$

and

$$v_n = \sum_{n=1}^{\infty} a_k^{-2}$$
 .

THEOREM 4.1. If

$$G(t)=rac{1}{2\pi i}\int_{-i\infty}^{i\infty}rac{e^{st}}{E(s)}ds \hspace{1cm} (E(s)\in B)$$
 , $G_{2n}(t)=\prod_{1}^{n}\Big(1-rac{D^{2}}{a_{\perp}^{2}}\Big)G(t)$

then

(4.3)
$$G_{2n}(t) = k(t, v_n) + O(|a_{n+1}|^{-2}S_n^{-3/2}) \qquad (n \to \infty)$$

uniformly on $-\infty < t < \infty$.

Observe that the remainder term in (4.3) tends to zero with v_n under the assumption $E(s) \in B$.

LEMMA 4.2. Let $E_{2n}(s)$, v_n and S_n be defined by (2.1), (4.2) and (4.1) with the roots $a_k = r_k e^{i\beta_k}$ satisfying Condition B. Then there exist two strictly positive constants c and δ such that for any u in $-\delta \leq u \leq \delta$ we have

$$rac{1}{E_{\scriptscriptstyle 2n}(ir_{\scriptscriptstyle n+1}u)} = \exp\left(-r_{\scriptscriptstyle n+1}^{\scriptscriptstyle 2}v_{\scriptscriptstyle n}u^{\scriptscriptstyle 2}
ight) + O[r_{\scriptscriptstyle n+1}^{\scriptscriptstyle 2}S_{\scriptscriptstyle n}u^{\scriptscriptstyle 4}\exp\left(-cr_{\scriptscriptstyle n+1}^{\scriptscriptstyle 2}S_{\scriptscriptstyle n}u^{\scriptscriptstyle 2}
ight)]$$
 .

The O-term denotes a function of both n and u such that for some constant M and all u and n the absolute value of this function does

not exceed M times the quantity inside the O-symbol.

Proof. Let $J_n(u)$ be the function

$$J_{n}(u) = rac{1}{E_{2n}(ir_{n+1}u)} - \exp\left(-r_{n+1}^{2}v_{n}u^{2}
ight) \qquad (n=0,1,2,\cdots)$$
 .

Let δ be arbitrary in $0 < \delta < 1/2$ and assume that u is restricted to $|u| \le \delta$ throughout the proof. If $c_{2p}(n)$ is defined as

$$c_{2p}(n)=(-1)^p(1/p)r_{n+1}^{2p}\sum_{k=n+1}^\infty a_k^{-2p} \qquad (n=0,1,2,\,\cdots;\,p=1,2,\,\cdots)\;,$$

then

$$(1) \hspace{1cm} J_{n}(u) = \exp{(-r_{n+1}^{2}v_{n}u^{2})} \Big\{ \exp{\Big[\sum_{p=2}^{\infty}c_{2p}(n)u^{2p}\Big]} - 1 \Big\} \hspace{1cm} (\mid u \mid \leq \delta) \; .$$

It is interesting to observe that $\lim_{n\to\infty} |c_{2p}(n)| = \infty$ for all p, if $r_k = k^{\alpha}$ with α in $1/2 < \alpha < 3/2$. Next it is shown that $c_{2p}(n)$ satisfies the inequality

$$|c_{2p}(n)| \leq rac{1}{p} r_{n+1}^2 S_n \qquad (n = 0, 1, 2, \cdots; p = 1, 2, \cdots).$$

If N(t) and $\theta(t)$ are the functions

$$N(t) = \sum\limits_{r_k < t} 1$$
 , $heta(t) = \int_t^\infty \lambda^{-2} dN(\lambda)$ $(0 \le t < \infty)$,

then $|c_{2p}(n)|$ is given by

$$\mid c_{\scriptscriptstyle 2p}(n) \mid \ = \ - rac{1}{p} \, r_{\scriptscriptstyle n+1}^{\scriptscriptstyle 2p} \int_{r_{\scriptscriptstyle n+1}}^{\infty} t^{\scriptscriptstyle -2p+2} d heta(t)$$
 .

An integration by parts gives the required inequality

$$|c_{2p}(n)| = rac{1}{p} r_{n+1}^2 S_n - (p-1) r_{n+1}^{2p} \int_{r_{n+1}}^{\infty} t^{-2p+1} \theta(t) dt \leq rac{1}{p} r_{n+1}^2 S_n$$
 .

Use of the inequality $Re v_n \ge S_n \sin 2\eta$ and (2) in equation (1) gives

$$(\,3\,) \qquad |\,J_{\scriptscriptstyle n}\!(u)\,| \leq \exp{(-r_{\scriptscriptstyle n+1}^{\scriptscriptstyle 2}\!S_{\scriptscriptstyle n}u^{\scriptscriptstyle 2}\sin{2\eta})}\,\{\exp{[(1-\delta^{\scriptscriptstyle 2})^{\scriptscriptstyle -1}\!r_{\scriptscriptstyle n+1}^{\scriptscriptstyle 2}\!S_{\scriptscriptstyle n}u^{\scriptscriptstyle 4}]}-1\}$$
 .

Choose any δ_1 in $0 < \delta_1 < 1$ and consider the two cases:

Case 1.
$$(1-\delta^{\scriptscriptstyle 2})^{\scriptscriptstyle -1}r_{\scriptscriptstyle n+1}^{\scriptscriptstyle 2}S_{\scriptscriptstyle n}u^{\scriptscriptstyle 4}\leqq\delta_{\scriptscriptstyle 1}$$
 ,

(4) Case 2.
$$(1-\delta^2)^{-1}r_{n+1}^2S_nu^4>\delta_1$$
.

In Case 1, an application of two geometric sum estimates to (3) give the conclusion of the lemma, i.e.

$$|J_n(u)| \leq (1-\delta^2)^{-1}(1-\delta_1)^{-1}r_{n+1}^2S_nu^4\exp\left(-u^2r_{n+1}^2S_n\sin 2\eta\right).$$

For the proof in Case 2, the inequality (3) gives

$$\begin{array}{ll} (6) & |J_n(u)| \leq \exp\left(-u^2 r_{n+1}^2 S_n \sin 2\eta\right) \\ & + \exp\left\{r_{n+1}^2 S_n u^2 \left[(1-\delta^2)^{-1} u^2 - \sin 2\eta\right]\right\}. \end{array}$$

Now choose δ as $\delta = (1/2)(\sin 2\eta)^{1/2}$. Then using the inequality

$$(1-\delta^2)^{-1}u^2-\sin 2\eta \le -(2/3)\sin 2\eta$$

and by multiplying (6) by (4), we obtain the conclusion of the lemma for Case 2:

$$(7) \qquad |\,J_{\scriptscriptstyle n}(u)\,| \leqq 2(1\,-\,\delta^{\scriptscriptstyle 2})^{-1}\delta_{\scriptscriptstyle 1}^{-1}r_{\scriptscriptstyle n+1}^{\scriptscriptstyle 2}S_{\scriptscriptstyle n}u^{\scriptscriptstyle 4}\exp\left[\,-\,u^{\scriptscriptstyle 2}r_{\scriptscriptstyle n+1}^{\scriptscriptstyle 2}S_{\scriptscriptstyle n}(2/3)\sin2\eta\right]\,.$$

Thus (5) and (7) together prove the lemma.

Next Theorem 4.1 is proved.

Proof. The change of variable $y = r_{n+1}u$ in the integral

$$G_{\scriptscriptstyle 2n}(t) = rac{1}{\pi} \! \int_{\scriptscriptstyle 0}^{\infty} \! rac{\cos yt}{E_{\scriptscriptstyle 2n}(iy)} dy$$

and Lemma 4.2 imply that

$$egin{align} G_{2n}(t) &= rac{r_{n+1}}{\pi} \int_0^\delta \cos{(r_{n+1}tu)} \{\exp{(-r_{n+1}^2v_nu^2)} \ &+ O[r_{n+1}^2S_nu^4\exp{(-cr_{n+1}^2S_nu^2)}] \} \mathrm{du} \, + \int_{\delta r_{n+1}}^\infty rac{\cos{ty}}{E_{2n}(iy)} \, dy \; . \end{split}$$

The hypothesis that $\lim_{n\to\infty} r_{n+1}^{4/3}S_n=\infty$ guarantees that for all n sufficiently large we have $S_n-r_k^{-2}>(1/2)S_n$. Hence for all large n the second lower bound of part A of Lemma 2.2 satisfies

$$||E_{\scriptscriptstyle 2n}(iy)|| \geq 1 + rac{1}{2} y^{\scriptscriptstyle 4} \sin^{\scriptscriptstyle 2} \eta \sum\limits_{\scriptscriptstyle n+1}^{\infty} rac{1}{r_{\scriptscriptstyle k}^{\scriptscriptstyle 2}} \Big(S_{\scriptscriptstyle n} - rac{1}{r_{\scriptscriptstyle k}^{\scriptscriptstyle 2}}\Big) \geq 1 + \Big(rac{1}{2} y^{\scriptscriptstyle 2} S_{\scriptscriptstyle n} \sin \eta\Big)^{\!\scriptscriptstyle 2}$$
 .

The latter inequality shows that

$$\int_{\delta r_{n+1}}^{\infty} rac{1}{\mid E_{2n}(iy)\mid} dy = O(r_{n+1}^{-3} S_n^{-2}) \qquad (n
ightarrow \infty) \; .$$

Note that

$$r_{n+1}^{-3}S_n^{-2} = O(r_{n+1}^{-2}S_n^{-3/2})$$
 $(n \to \infty)$.

For any v with Re v > 0, the function k(t, v) has the representation

(3)
$$k(t, v) = \frac{1}{\pi} \int_0^\infty e^{-vu^2} \cos tu du \qquad (-\infty < t < \infty).$$

Use of (2) and (3) in equation (1) together with some elementary power series estimates of the exponential function give the conclusion of the theorem.

We saw in Theorem 2.1 that the essential step in the proof of the inversion formula was to show that

$$\int_{-\infty}^{\infty} |G_{2n}(t)| dt = O(1)$$
 $(n o \infty)$.

The next theorem gives a more precise asymptotic formula for the L^1 -norms of the kernels $G_{2n}(t)$.

If η and v_n are as in Condition A and in equation (4.2), let φ_n be defined by

$$(4.4) v_n = |v_n| e^{-2i\varphi_n}$$

with $|\varphi_n| \le \pi/4 - \eta$. The latter implies that in the next corollary we have

$$(\cos^2 \varphi_n - \sin^2 \varphi n)^{-1/2} \leq (\sin 2\eta)^{-1/2}$$
.

COROLLARY 4.3. Let $G_{2n}(t)$, φ_n , and η be as in Theorem 4.1, equation (4.4) and Condition A respectively. Then

$$\int_{-\infty}^{\infty} |G_{2n}(t)| dt \sim (\cos^2 \varphi_n - \sin^2 \varphi_n)^{-1/2}$$
 $(n o \infty)$.

Proof. Our first estimate of $G_{2n}(t)$ from Lemma 2.4,

$$|G_{2n}(t)| < MS_n^{-1/2} \exp\left(-KS_n^{-1/2} |t|\right)$$
 ,

shows that

$$\int_{-\infty}^{\infty} |G_{2n}(t)| dt \sim \int_{-1}^{1} |G_{2n}(t)| dt$$
 $(n o \infty)$.

An elementary integration shows that

$$\int_{-\infty}^\infty |k(t,|v_n|e^{-2iarphi_n})|dt=(\cos^2arphi_n-\sin^2arphi_n)^{-1/2}$$
 ,

and that

$$\lim_{n o\infty}\int_{1<|t| .$$

Finally, our second estimate of $G_{2n}(t)$ from Theorem (4.1),

$$G_{2n}(t) = k(t, v_n) + O(|\alpha_{n+1}|^{-2}S_n^{-3/2})$$

together with the assumption B that $|a_{n+1}|^{-2}S_n^{-3/2}$ goes to zero with 1/n, gives the conclusion of the theorem,

$$\int_{-\infty}^{\infty} |G_{2n}(t)| dt \sim (\cos^2 arphi_n - \sin^2 arphi_n)^{-1/2}$$
 $(n
ightarrow \infty)$.

REMARKS 1. If the roots a_k defining the kernels $G_{2n}(t)$ are of the form $a_k = r_k e^{i\beta}$ for some $|\beta| < \pi/4$, then $\varphi_n = \beta$ for all n, and the asymptotic formula of the previous corollary becomes infinite as $\beta \to \pi/4$. The latter fact suggests that our present methods cannot be used to generalize the inversion theorem 3.5 in order to allow the roots to lie in any angular sector about the real axis exceeding or even equal to forty five degrees.

- 2. It is an open question whether all the results of this section are valid if the hypothesis that $\lim_{n\to\infty} r_{n+1}^2 S_n^{3/2} = \infty$ is replaced by the weaker assumption that $\lim_{n\to\infty} r_{n+1}^2 S_n = \infty$.
- 3. It is also an open question whether under some assumption similar to Condition B the integral

$$\int_{-\infty}^{\infty} |tG_{2n}'(t)| dt$$

is asymptotic to a constant times $(\cos^2 \varphi_n - \sin^2 \varphi_n)^{-3/2}$.

5. An explicit example. In this section the sequence of kernels $G_{2n}(t)$ is explicitly evaluated corresponding to $E(s) = \cos(\pi e^{-i\beta}s)$ where β is some number in $|\beta| < \pi/4$.

If $E_{2n}(s)$ is the function

$$E_{2n}(s) = \prod_{n+1}^{\infty} \Bigl(1 - rac{s^2}{(k-1/2)^2 e^{2ieta}}\Bigr)$$
 $(n=0,1,2,\cdots)$,

then as in equation (2.3), the kernel $G_{2n}(t)$ is given by

$$G_{2n}(t) = rac{1}{2\pi i} \int_{-i\infty}^{i\infty} rac{e^{st}}{E_{2n}(s)} ds \qquad \quad (-\infty < t < \infty \,;\, n=0,1,2,\,\cdots)$$
 .

Let a and w be $a=e^{i\beta}$ and $w=e^{at}$. For k>n, the residue of the integrand $e^{st}/E_{2n}(s)$ at s=(k-1/2)a is

$$rac{a}{\pi} w^{(2k-1)/2} (-1)^k \prod_{j=1}^n \Bigl(1 - rac{(k-1/2)^2}{(j-1/2)^2}\Bigr) = c w^{k-1} (-1)^{n+k} rac{(k+n-1)!}{(k-n-1)!}$$
 ,

where c is defined as

$$c = rac{a \exp{(at/2)}2^{4n}n!^2}{\pi (2n)!^2}$$
.

The kernel $G_{2n}(t)$ is easily seen to be the sum of the residues in the

right half plane Res > 0, i.e.

$$G_{2n}(t) = cw^n \Big(rac{d}{dw}\Big)^{2n} rac{w^{2n}}{1+w} \qquad \qquad (- onedown < t < \infty \,;\, n=0,1,2,\,\cdots) \;.$$

By use of the Leibnitz rule for differentiation of products, we obtain

$$(5.1) \quad G_{2n}(t) = \frac{2^{2n-1}n!^2}{\pi(2n)!} a \bigg[\operatorname{sech} \frac{at}{2} \bigg]^{2n+1} \quad (-\infty < t < \infty \, ; \, n = 0, \, 1, \, 2, \, \cdots) \; .$$

REMARKS 1. Although the above computation is also valid for any β with $\pi/4 < |\beta| < \pi/2$ it can be shown that

$$\lim_{n o \infty} \int_{-\infty}^{\infty} |G_{2n}(t)| \, dt = \infty$$

and

$$\lim_{n\to\infty}\int_{-\infty}^{\infty}|tG_{2n}'(t)|\,dt=\infty$$

for such a β .

2. Perhaps the inversion Theorem 2.1 remains valid if the roots a_k are allowed to lie in an angular sector of exactly forty-five degrees provided the function $\varphi(t)$ is continuous and of bounded variation at the point t=x at which its value is to be recovered. The latter has been shown to be true in [1] for the special kernel G(t) given by (5.1) with $\beta=\pi/4$.

REFERENCES

- 1. J. Dauns, Convolution transforms whose inversion functions have complex roots, Ph.
- D. thesis 1963, Harvard University, Cambridge, Mass.
- 2. A. O. Garder, The inversion of a special class of convolution transforms, M. A. thesis 1950, Washington University, St. Louis, Missouri.
- 3. I. I. Hirschman and D. V. Widder, The inversion of a general class of convolution transforms, Trans. Amer. Math. Soc. 66 (1949).
- 4. —, Convolution transforms with complex kernels, Pacific J. Math. 1 (1951).
- 5. —, The convolution transform, Princeton, 1955,
- 6. D. V. Widder, The Laplace transform, 2nd ed., Princeton 1946.
- 7. ——, Inversion formulas for convolution transforms, Duke J. Math. 4 (1947).

HARVARD UNIVERSITY

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. SAMELSON

Stanford University Stanford, California

R. M. BLUMENTHAL

University of Washington Seattle, Washington 98105 J. Dugundji

University of Southern California Los Angeles, California 90007

RICHARD ARENS

University of California Los Angeles, California 90024

ASSOCIATE EDITORS

E. F. BECKENBACH

B. H. NEUMANN

F. Wolf

K. Yosida

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON
OSAKA UNIVERSITY
UNIVERSITY OF SOUTHERN CALIFORNIA

STANFORD UNIVERSITY
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON

* * * *

AMERICAN MATHEMATICAL SOCIETY CALIFORNIA RESEARCH CORPORATION SPACE TECHNOLOGY LABORATORIES NAVAL ORDNANCE TEST STATION

Mathematical papers intended for publication in the *Pacific Journal of Mathematics* should by typewritten (double spaced). The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. It should not contain references to the bibliography. Manuscripts may be sent to any one of the four editors. All other communications to the editors should be addressed to the managing editor, Richard Arens, at the University of California, Los Angeles, California 90024.

50 reprints per author of each article are furnished free of charge; additional copies may be obtained at cost in multiples of 50.

The *Pacific Journal of Mathematics* is published quarterly, in March, June, September, and December. Effective with Volume 13 the price per volume (4 numbers) is \$18.00; single issues, \$5.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: \$8.00 per volume; single issues \$2.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley 8, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 6, 2-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

The Supporting Institutions listed above contribute to the cost of publication of this Journal,
but they are not owners or publishers and have no responsibility for its content or policies.

Pacific Journal of Mathematics

Vol. 15, No. 2

October, 1965

Patrick Robert Ahern, On the generalized F. and M. Riesz theorem	373
A. A. Albert, On exceptional Jordan division algebras	377
J. A. Anderson and G. H. Fullerton, On a class of Cauchy exponential	
series	405
Allan Clark, Hopf algebras over Dedekind domains and torsion in	
<i>H-spaces</i>	419
John Dauns and D. V. Widder, Convolution transforms whose inversion	
functions have complex roots	427
Ronald George Douglas, <i>Contractive projections on an</i> L ₁ <i>space</i>	443
Robert E. Edwards, Changing signs of Fourier coefficients	463
Ramesh Anand Gangolli, Sample functions of certain differential processes on	
symmetric spaces	477
Robert William Gilmer, Jr., Some containment relations between classes of	
ideals of a commutative ring	497
Basil Gordon, A generalization of the coset decomposition of a finite	500
group	503
Teruo Ikebe, On the phase-shift formula for the scattering operator	511
Makoto Ishida, On algebraic homogeneous spaces	525
Donald William Kahn, Maps which induce the zero map on homotopy	537
Frank James Kosier, Certain algebras of degree one	541
Betty Kvarda, An inequality for the number of elements in a sum of two sets of	
lattice points	545
Jonah Mann and Donald J. Newman, <i>The generalized Gibbs phenomenon for</i>	
regular Hausdorff means	551
Charles Alan McCarthy, <i>The nilpotent part of a spectral operator. II</i>	557
Donald Steven Passman, Isomorphic groups and group rings	561
R. N. Pederson, Laplace's method for two parameters	585
Tom Stephen Pitcher, A more general property than domination for sets of probability measures	597
Arthur Argyle Sagle, <i>Remarks on simple extended Lie algebras</i>	613
Arthur Argyle Sagle, On simple extended Lie algebras over fields of	
characteristic zero	621
Tôru Saitô, <i>Proper ordered inverse semigroups</i>	649
Oved Shisha, Monotone approximation	667
Indranand Sinha, Reduction of sets of matrices to a triangular form	673
Raymond Earl Smithson, Some general properties of multi-valued	
functions	681
John Stuelpnagel, Euclidean fiberings of solvmanifolds	705
Richard Steven Varga, Minimal Gerschgorin sets	719
James Juei-Chin Yeh, Convolution in Fourier-Wiener transform	731