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Beginning with a mild extension of a theorem of Little-
wood, as generalised by Helgason and by Grothendieck from
the circle to a general compact Abelian group G, we derive
some properties of the Fourier series of continuous functions
on G in relation to arbitrary changes of sign of the coefficients.
The main result of this latter type sharpens a fact known
for the circle by showing that a continuous function f on G
and a ±l-valued function ω on the character group X may
be chosen so that

belongs to no Orlicz space LΛ(G) for which limw_>oo u~2A(u) = oo.
Similar results are obtained which apply when / is assumed
to be merely integrable: in this case one can assert little more
than that Tωf is a pseudomeasure on G.

NOTATION. With the sole exception of (3.5), G denotes a compact
Abelian group and X its character group. We write Ω for the set of
all functions on X taking only the values ± 1 , and Ω* for the set of
all complex-valued functions on X having absolute value everywhere
equal to 1.

The symbol LP(G) denotes the usual Lebesgue space formed with
the Haar measure on G, and likewise for lp(X) and the (purely dis-
continuous) Haar measure on X. M(G) is the space of complex Radon
measures on G, and C(G) the space of complex-valued continuous func-
tions on G with the usual sup norm.

1* A LittlewoocUtype theorem*

(1.1) THEOREM. If F is a complex-valued function on X with
the property that for each ω e Ω the series

(1.1.1) Σω{ξ)F(ξ)ξ

is a Fourier-Stieltjes series, then Fel2(X).

(1.2) REMARKS. If G is the circle group, and if the Fourier
series are taken in their "real" form, the stated conclusion is known
to follow from the hypothesis that each series (1.1.1) is a Fourier
series: see [7], p. 215, where a proof is based upon the properties of
Rademacher series. One difficulty attending an extension of this
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approach to general G, using now the properties of Rademacher series
in relation to general orthogonal expansions (see [5], pp. 179-186), is
the absence of detailed information regarding the pointwise a.e. sum-
mability of Fourier series on groups. For this reason we adopt an
approach which side-steps this issue and which is due to Helgason
and to Grothendieck independently.

Helgason [3] proves that the conclusion Feΐ*(X) follows from
the assumption that (1.1.1) is a Fourier series for each ω e β * . The
same conclusion, but with Ω reinstated, is implicit in Grothendieck
[1] (especially p. 90) and [2]. Our proof of (1.1) will begin from
Helgason's version.

(1.3) Proof of (1.1). Notice that it is enough to consider real-
valued functions F in (1.1). For, it F = U + iV (U, V real valued)
is a Fourier-Stieltjes transform, so also is F — U — i V, and therefore
also each of U and V. So, by virtue of Lemma (1.5) infra, if (1.1.1)
is a Fourier-Stielt jes series for each ωe Ω, then the same is true when
ω is replaced by any bounded, complex-valued function on X, and hence
in particular whenever ωeΩ*.

This being so, if feL\G), the series

Σω{ξ)F{ξ)f{ξ)ξ

is a Fourier series for each ωe Ω*, and Helgason's theorem affirms then
that Ffe l\X). Hence (by the closed graph theorem, for example)

(1.1.2) || F?\\*£ const, \\f\\,

for each feL\G). If / is permitted to vary over an approximate
identity in L\G), (1.1.2) shows at once that Fe l\X).

(1.4) COROLLARY. If the series

(1.1.3) Σc(ξ)F(ξ)ξ

is a Fourier-Stielt jes series for each complex-valued function c on
X which tends to zero at infinity, then Fe l\X).

Proof. Theorem (1.1) implies at once that cFe 12(X) for each c
of the type specified. But then, since these c's form a Banach space,
the closed graph theorem shows that

II CJP ||2 ^ const, supe | c(ξ) | ,

whence it follows directly that Fe l\X).
It remains to prove the following lemma. In it, Rx denotes the
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space of all real-valued functions on X endowed with the product
topology.

(1.5) LEMMA. Let E be a topological vector space which is the
union of an increasing sequence (An)n=ι of compact, convex and bal-
anced subsets. Let X be any set, and let Φ be any bounded subset
of Rx with the following properties—

(a) Φ is a nonmeagre subspace of Rx (as is the case if Φ is locally
compact or complete metrisable);

(b) Ω-Φ(zΦ; and if Xo is a finite subset of X.ψ^Φ (i = 1,2),
and ψ = φx on Xo, φ = <p2 on X ΓΊ X£9 then φ e Φ.

Suppose finally that T is a continuous linear mapping of E into
Rx such that

(c) T(E) contains Φ and also all characteristic functions of one-
point subsets of X.

Then there exists a natural number n and a number r ^ 0 such
that r T(An) contains every f e Rx satisfying | ψ | g φ f or some φeΦ.

Proof. This is presented in two steps.
(1) The compactness of An and the continuity of T ensure that

T(An) is closed in Rx. By (c), Φ is the union of the sets T(An) f] Φ,
each of which is closed in Φ. By (a), therefore, there exists a natural
number n' such that T{An.) Π Φ contains a nonvoid open subset of Φ.
That is, there exists φQ e Φ and a finite subset Xo of X such that
T{An) contains each φ e Φ coinciding on Xo with φ0. Enumerate Xo

as {ξj j — 1, •• , k} and let φd be the characteristic function of {ξά}..
By (c) once more, there exists e5 e E such that T(ej) = φjm For any
φβ Φ we can write

^ = Σ [^(fί) - ψMdλψi +

where, thanks to (b), φ* e Φ. Then

for some e* e An>. Since Φ is bounded, there exists a number r'r
independent of φ, such that

Σ I φ(ξi) - <Po(£y) I ^
i

Moreover, there exists an w" such that An» contains all the ejt It
thus appears that, if we set r = r' + 1 and w = max (n'f n"), then.
Φar T(An).
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(2) Take now any Θ eRx having a finite support and any γ£ Rx

satisfying | ψ | ^ φQ for some φoeΦ. For a suitable choice of coeΩ
we have then (the sums extending over all ξ e X)

I Σθ(ξ)ψ(ξ) \^Σ\ θ(ξ)ir(ξ) ^ Σ I θ(ξ) I <pQ(ξ)

= \ΣΘ(ξ)φo(ξ)ω(ξ)\

φβΦ

the last two steps by (b) and by (1) respectively. The bipolar theorem
shows now that ψ is adherent in Rx to T(rAn). But this last set is
closed in Rx', and so f e r Γ(An), as alleged.

(1.6) REMARK. TO apply (1.5) in the situation prevailing in (1.3),
we take E = M(G) with the topology σ(M(G)9 C(G)), An to be the closed
ball in M(G) of radius n,Φ — F Ω (which is compact for the product
topology), and Tμ — μ for μeE. Then (c) is satisfied when (1.1.1)
is a Fourier-Stieltjes series for each ω e Ω, and the desired conclusion
follows.

Notice that we might also take E — LP(G) with K p ^ o o and
use the weak topology σ(Lp, Lp>). It would then follow that, if (1.1.1)
is the Fourier series of a function in LP(G) whenever ωe Ω, then the
same is true when ω is replaced by any bounded real-valued function
on X.

2* Fourier coefficients of continuous functions* We shall hence-
forth write T(G) for the space of all trigonometric polynomials on G,
and T0(G) for the set of such polynomials

t(x) = Σckξk(x) (a finite sum)

with the property that, for some choice of the ± signs (depending
upon ί),

max IΣ ± ckξk(x) \ ̂  1 .
xβQ

If for ωeΩ we define the functional operator Tω for (say) / e C(G)

by setting

TJ = Σω{ξ)f{ξ) ,

the series converging^ in L\G), T0(G) consists precisely of those te T(G)

such that

min| |Γ ω ί | | g l .
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Expressed differently, T0(G) consists of all functions Tωt obtained when
ω varies over Ω and t over all trigonometric polynomials satisfying
\\t\\ fg 1. The operators Tω will appear again later in this section.

We begin with a result which characterises those functions F on
X for which Ffel\X) for each feC(G).

(2.1) THEOREM. Let F be a complex-valued function on X.
(a) // the series Σω(ξ)F(ξ)f(ξ) is convergent whenever ω e Ω and

feC(G). . i.e., if

(2.1.1) Σ I F(ξ)f(ξ) I < oo

for each f e C(G) then F e l\X).
(b) There exists a number M such that

(2.1.2) \\F\\t £ Λ

(c) There exists a number M such that for all F e 12(X) one has

(2.1.3) || F | | a fS M Sup {| ΣF(ξ)ΐ(ξ) \ : t e

Proof, (a) In view of the Riesz representation theorem, the
hypothesis of (a) entails that each series (1.1.1) is a Fourier-Stieltjes
series, so that the assertion follows from Theorem (1.1).

(b) The proof of this is similar to, and simpler than, that of (c).
It is left to the reader.

(c) On l\X) define the norm

N(F) = Sup {| ΣF(ξ)ΐ(ξ) I : t e T0(G)}

= Sup {| Σω(ξ)F(ξ)t(ξ) I : t e T(G), \\t \\ g 1, ω e Ω) .

It is quite evident that N(F) ^ \\F\\2. By virtue of the inversion
theorem for Banach spaces, it will therefore suffice to show that l\X)
is complete for N.

To this end, assume that (Fn)~=1 is an N-Cauchy sequence in 12(X).
Evidently, F = lim Fn exists pointwise on X. Given ε > 0, there exists
n0 — no(ε) such that

Sup I Σω(ξ)[Fm(ξ) - Fn{ξ)ίt(ξ) I ̂  e
t ω

whenever m,n ^ n0. Hence, since each t has a finite support,

(2.1.4) Sup I Σω(ξ)[F(ξ) - Fn(ξ)]t(ξ) \ £ e
t,ω

for n ^ n0. In particular, if nf — no(l),

Sup I Σω(ξ)F(ξ)ί(ξ) I ̂  N(Fn>) + 1 .
t,ω
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Separating real and imaginary parts and then choosing ω e Ω suitably
for each of these, it follows that

the supremum now being taken over the unit ball of T(G). This last
is dense in the unit ball of C(G), and so we may infer that Ffe l\X)
for each feC(G). By (a), therefore, Fel\X). Knowing this, (2.1.4)
signifies exactly that N(F — Fn) ^ ε f or n ^ n0. Completeness is thus
established.

(2.2) REMARKS, (i) It is scarcely necessary to point out that
the conditions on F in order that the series ΣF(ξ)f(ξ) *be convergent
for each / e C(G) are of quite a different sort. For example, if G is
the circle group, and if (an)^=0 is a sequence which is convex and such
that an log n —•» 0 as n —> °o, then the series

oo

2J
 a\n\e

n=—oo

is convergent in L\G) ([7], pp. 183-185). Consequently the series

is convergent for each xeG if f e L°°(G), and uniformly with respect
to x if / G C(G). Yet, of course,

is generally divergent.
(ii) I am grateful to a referee for pointing out that Theorem 2.1

(a) was proved for the circle by Sidon [6] and for all compact groups
(Abelian or not) by Helgason [4].

The following is a simple extension of (2.1.b), the proof of which
is left to the reader.

(2.3) COROLLARY. If 1 ^ p ^ 2, and if Ff e lp(X) for each
f e C(G), then F e lq(X) where q = 2p/(2 — p). Moreover, there exists
a number M such that for all complex-valued functions F on X one
has

|| F\\q ^ M Sup {|| Ff\\P:feC(G), | | / | | ^ 1} .

The next result deals with the possibility of expanding arbitrary
functions in L\G) as a series of scalar multiples of elements of T0(G).
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(2.4) THEOREM. There exists a number c such that each h e L\G)
is expressible in the form

(2.4.1) h = Σ Ktl ,
n=l

where t°ne T0(G), or alternatively in the form

(2.4.1') h = Σ KTωJn ,

where ωneΩ and ί n e T(G), | | ί w | | ^ 1; α^cί where in either case

(2.4.2) ΣA\K\^ c-\\h\\2 .

Proof. By (2.1.3) and ParsevaΓs formula we have for geL\G)
the inequality

^ M Sup [gtdx : t e T0(G)\ .

According to the bipolar theorem, it follows that any h e I/2(G) sat-
isfying || fe ||2 ^ ikί"1 = r belongs to the closed, convex, balanced envelope
in L2(G) of T0(G). The rest is a direct application of the general but
simple result contained in the following lemma.

(2.5) LEMMA. Let E be a normed vector space, A a subset of
E, and B the convex, balanced envelope in E of A. Suppose that
there exists a number r > 0 such that B is dense in the ball \\x\\ ^ r
in E. Let ε > 0. Then any xe E satisfying \\x\\ ̂  r can be repre-
sented as a sum

= Σ
71 = 1

where α n e 4 ( w = l ,2, ) and where the scalars Xn satisfy the
condition

Σ J ^ 1 + ε .

Proof. Choose numbers εn > 0 such that ε1 = 1 and

Σδ^i + s.

Then elements 6n of B may be chosen so that

(2.5.1)
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Indeed, we choose bte B so that || x — bλ || = || x — ελl
possible by the density assertion concerning B. If bu

chosen in accord with (2.5.1), we have

^ re2; this is
, bn have been

and so, by the same hypothesis concerning B, one may select bn+1 e B
so that

On rearrangement this gives (2.5.1) with n replaced by n + 1, and
the construction of the sequence (ί>%)~=i proceeds by recurrence.

It now suffices to write

CO

bn = Σ ^nkUnk ,

where the an]c e A, λwfc = 0 f or Jc > kn, and Σ£=i l̂ »*l = l The desired
representation of # follows on arranging the ank and the λwA. as single
sequences (αw)£U and (λw)^=1 for which

Iλ.

Although the conclusion of Theorem (2.4) itself implies considerable
irregularity in the behaviour of the Tωt involved, this is best crys-
tallised by reverting to Theorem (1.1), which leads to the following
result.

(2.6) THEOREM, Assume that G is infinite, let g e L\G)f g 0 L\G).
Then there exist an ft) e Ω and a sequence (tn)n=i of trigonometric poly-
nomials on G such that

(2.6.1)

(2.6.2) lim j [ (Tjjgda

Proof. The function g does not belong to Γ(X) and so, by Theorem
(1.1), there exists an ω e Ω such that Σω(ξ)g(ξ)ξ is not a Fourier-
Stieltjes series. Taking any sequence (rw)^=1 of trigonometric poly-
nomials such that H r J I i ^ l and limn_#ββfn(—ξ) = 1 at all points of
the countable support of g, it follows that
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Hence there exists an / e C(G) such that

lim mvn\Σω(ξ)g(ξ)rn(-ξ)Λ-ξ)

By dropping terms, we may replace the lim sup by lim, and then it
suffices to take tn = ( r n * / ) / | | / | | .

(2.7) REMARKS. From (2.6) it follows that the sequence (ίw)~=i
may be chosen so as to satisfy (2.6.1) and

(2.7.3) limn\\ TJn\\p = - (Vp > 2)

or so as to satisfy (2.6.1) and to be such that the Tωtn are unbounded
in any given Orlicz space LΛ(G) defined by a function A such that
l i m ^ u-2A(u) = oo (see [7], pp. 170-175).

From (2.6) we may derive in turn the anomalous behaviour of the
Tωf with / continuous.

(2.8) THEOREM. Assuming again that G is infinite, take any
g G L\G), g $ L2(G). Then there exist an coe Ω and an f e C(G) such
that

(2.8.1) ( \{TJ).g\dx= oo .\

Proof. Choose ω as in (2.6). If the conclusion of the present
theorem were false, one would have a linear map f—*(Tωf) g of C(G)
into L\G). An easy application of the closed graph theorem would
show that this map is continuous. But this would contradict (2.6).

(2.9) REMARKS, (a) The preceding proof could be refined so as
to show that the set of ωeΩ, for which

^r = {feC(G) : (Tuf)-geL\G)}

is second category in C(G), is first category in Ω; or (to put it another
way) that for a residual (=complement of a first category) set of
ωeΩ,^ω is first category in C(G).

(b) From (2.8) it follows that ω e Ω and / e C(G) can be found
so that TJ fails to belong to U {LP(G) : p > 2}, or indeed to any
Orlicz space LΛ(G) for which lim^^ u~2A(u) — oo (see (2.7)).

With this in mind one may compare (2.8) with a known analogous
result for the circle group and Fourier series handled in their "real"
form. From the results on pp. 214-215 of [7] it follows that for any
fixed p > 2 there exist a function / such that
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(2.9.1) ( exp(a\f\>)dx< oo(yα)

and a sequence of ± l ' s such that, writing

/ ~ l/2α0 + Σ (an cos nx + bn sin nx) ,

the series

CO

± l/2α0 + Σ ± (αw cos nx + bn sin wcc)Σ
n-l

is not the Fourier series of any function in LP(G).
Evidently, Theorem (2.8) forms an analogue of this which has

been sharpened in two directions: first by the enlargement of LP(G)
to the space of functions whose product with g is integrable, and
second by the narrowing of the class defined by (2.9.1) [which
contains essentially unbounded functions] to C(G).

3* Related results* Helgason [3] and Grothendieck ([1], p. 90)
obtained (again independently) the following result.

(3.1) THEOREM. If a function F on X has the property that
(1.1.1) is the Fourier series of a function in L°°(G) whenever ωeΩ,
then F e l\X).

On the basis of (1.6) this result is easily established. For suppose
more generally that (l.l l) is the Fourier series of a function in LP(G)
whenever ωeΩ, where 1 < p ^ oo. Then, by (1.6),

Σu(ξ)F{ξ)ξ

is the Fourier series of a function in LP(G) whenever u e l°°(X). Taking
any / e LP'(G), one obtains therefore a linear map T: u — Σu(ξ)F(ξ)f(ξ)ξ
of co(X) into C(G), and the closed graph theorem shows that T is
continuous. The adjoint T" maps M(G) into l\X). A simple calculation
shows that T" carries ε (the Dirac measure at the neutral element of
G) into Ff, so that Ffe l\X). A second application of the closed
graph theorem shows that

(3.1.1) Σ\F{ξ)f{ξ)\S const. | | / | | P , .

Conversely, if (3.1.1) holds, it is easy to verify that (1.1.1) is the
Fourier series of a function in LP(G) whenever ωeΩ. Now, if p — oof

then pf = 1 and (3.1.1) entails that F e l\X). This proves (3.1).

(3.2) COROLLARY. Suppose given any g e L\G) such that g g l\X).
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Then there exists an co e Ω with the following property: for any net
(r%) of functions in L\G) such that

(i) fiβl^X), and
(i i) l i m , ? ( ! ) = 1 for each ξeX for which £ ( - £ ) = 1,

one has

(3.2.1) Sup,

for each f in a comeagre (and therefore dense) subset of L\G).

If it be assumed that g e L\G), one may in place of (i) assume
merely that each r, e L2(G).

Proof. According to Theorem (3.1), there exists an ω e Ω such
that Σω(ξ)g(—ξ)ξ is not the Fourier series of a function in L°°(G).
Consequently we must have

&\η>i\\Σω(ξ)§(-ξ)fi(ξ)ξ\\-= -

Consequently, too, the set of / e L\G), for which

(3.2.2) Sup, I Σω(ξ)g(~ξ)Uξ)M I < ~

must be meagre (first category) in L\G). By Baire's theorem, any
comeagre subset of L\G) is dense therein. Since the left hand sides
of (3.2.1) and (3.2.2) are plainly equal, the proof is complete.

(3.3) REMARKS, ( i ) Since the support of g(—ξ) is an any case
countable, we can for any given / e L\G) in the said comeagre set
choose a sequence (rj~=i satisfying (3.2.i) and for which

Tω(rn*f)-g<fa

(ii) From (i) it appears t h a t one can choose always a sequence
(fΛ)n=i of trigonometric polynomials on G such t h a t | | ί n | | i ^ 1 and

TJn-gdx

(iii) Let P(G) denote the space of pseudomeasures on G (the dual
of the space A(G) of continuous functions u on G having absolutely
convergent Fourier series, normed by || u\\A — Σ\ u(ξ) |). Whilst it is
evident that each Tω defines a continuous linear map of P(G) into
itself, Corollary (3.2) says (roughly) that, for general / e L\G) c P(G)
and ω e Ω, Tωf cannot be better behaved than a pseudomeasure.

More precisely, suppose E is a vector space such that T(G) <
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L\G). Suppose further that Tωf is definable as an element of E*
(the algebraic dual of E) whenever ωeΩ and feL\G), in such a way
that

(a) <t, Tjy = Σω{ξ)M)t{-ξ) for t e Γ(G), ω e fl, and / e L\G);
(b) for any fixed ωeΩ, the family (Tω/J is σ(E*f £?)-bounded

whenever the family (f) is bounded in L\G).
Then necessarily EaA(G). This conclusion follows from Corollary
(3.2), if we choose for (r%) a net of trigonometric polynomials on G
forming an approximate identity in L\G).

(3.4) Introduce now the pseudomeasures on X. Then (3.1) can
be rephrased as follows: If F is a function on X such that ωF is a
pseudomeasure on X for each ωeί2, then F el\X). Bearing in mind
(1.6) once more, the next theorem may be regarded as an analogue of
(3.1) applying to groups G which are not necessarily compact.

(3.5) THEOREM. Let G be a locally compact Ahelίan group (not
necessarily compact), X its character group, and μ a Radon measure
on X. If fμ is a pseudomeasure on X for each f eC0(X), then μ is
a bounded Radon measure on X. (The converse is true and trivial.)

Proof. Let N(f) denote the pseudomeasure norm of fμ, so that

N(f) = Sup : geL\G), \\g\\, g l,geCc(X)}

CC(X) denotes the space of continuous functions on X having compact

is evidently
I Jx

a continuous seminorm on CQ(X), so that N is lower semicontinuous
and therefore continuous. Thus there exists a number m such that

() p
supports. For a fixed g of the type specified, /—> 1 gfdμ

I Jx
i i C(X) h N i l

- m\\g

for all / e C0(X) and all g e L\G) such that g has a compact support
Taking the supremum with respect to / satisfying | | / | | S 1, it appears
that

for each g of the type specified. At this stage we allow g to vary
along a suitably chosen approximate identity in L\G) to conclude that

f d\μ\ ^ m < co ,

showing that μ is a bounded measure.
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