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ON ALGEBRAIC HOMOGENEOUS SPACES

MaxkoTo ISHIDA

Let V be a homogeneous space with respect to a connected
algebraic group G and (4, o) an Albanese variety of V, Then,
for any points a and o’ of A, a (a) is a homogeneous space,
of dimension = dim V — dim 4, with respect to the maximal
connected linear normal algebraic subgroup L of G and there
exists an everywhere defined birational transformation of a '(a)
onto a(a’). We have (a) dimA = 0«7V is considered as
a homogeneous space with respect to a connected linear
algebraic group — The isotropy group of any point on V
contains D (where D is the smallest normal algebraic subgroup
of G giving rise to a linear factor group); (b) dim A =
dim V<=V 1is considered as a homogeneous space with respect
to an abelian variety — The isotropy group of any point on V
contains .. More generally, for a connected normal algebraic
subgroup N of G, we can define a quotient variety Wy of V
by N with a natural mapping ¢,y and then, for any points Q
and Q' of Wy, ¢7(@) is a homogeneous space with respect to
N and there exists an everywhere defined birational transfor-
mation of ¢5(Q) onto ¢5'(Q"). When N =1L, there exists a
bijective birational mapping of W, onto A and (W, ¢;) is an
Albanese variety of V. On the other hand, when N = D and
V is complete, W, is a rational variety and ¢3'(Q) is bira-
tionally equivalent to the direct product of an abelian variety
and a rational variety. In the case where the definition field
k of the homogeneous space V is finite, there exists a homo-
geneous space W with respect to L, defined over k, such that
we have (the number of rational peints on V' over k)= (the
number of rational points on A over k) x (the number of
rational points on W over k). In particular, if V is complete
then the conjecture of Lang and Weil on the zeros of the
congruence zeta-function of V follows from the above result.

It is known as the structure theorem of Chevalley (ef. [7]) that
a connected algebraic group G has a maximal connected linear normal
algebraic subgroup L such that the factor group G/L is an abelian
variety. One can prove this by considering the relation between G
and an Albanese variety of G; i.e. L is characterized as the inverse image
of a single point on the Albanese variety by a canonical mapping (ef.
[3] and [7]).

In this paper, we shall consider a homogeneous space V with
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respect to a connected algebraic group G, i.e. an algebraic variety V
on which G operates regularly and transitively (cf. [7]) and prove some
analogous results. Let A be an Albanese variety of V' and « a canonical
mapping of V into A. We shall show that, for any points ¢ and o'
on A, the inverse image a~%a) is a homogeneous space with respect
to the maximal connected linear normal algebraic subgroup L of G
and there exists an everywhere defined, birational transformation of
a(a) onto a~a’). (Theorem 1) Then we shall give some necessary
and sufficient conditions for (a) dim A = 0, and for (b) dim A = dim V.
(Theorem 2) Next we consider a connected normal algebraic subgroup
N of G and a homogeneous space W, with respect to G/N, which will
be defined in the beginning of § 2. There is a natural mapping ¢, of
V onto W,. We shall show that, for any points @ and Q" on Wy, the
inverse image ¢3;YQ) is a homogeneous space with respect to N and
there exists an everywhere defined, birational transformation of ¢3(Q)
onto @3 (Q’). (Theorem 3) There exists a bijective birational mapping
of Wy onto A when N = L. Finally we shall show, using these results,
that the problem of counting the number of rational points of homo-
geneous spaces over finite fields is reduced to the case where the
transformation groups are linear. (Theorem 4)

V being a homogeneous space with respect to a connected algebraic
group G, we shall denote, for any point (g, P) on G X V, the point of
V' obtained by operating g to P with gP. Also, for an algebraic
subgroup K of G, we denote by 7, the canonical separable mapping
of G onto the quotient variety G/K. If K is normal in G, then 7 is
a rational homomorphism. Let k be a field of definition for V, G and
the operation of G on V; moreover, we assume that there exists a
rational point P, on V over k. We denote by H the set of all the
elements g of G such that gP, = P, and call it the isotropy group of
P, (in G). Since H is the inverse image of P, by the rational mapping
g— gP, of G onto V, H is a k-closed algebraic subgroup of G. Then,
from the definition of quotient varieties, there exists a bijetive rational
mapping of G/H onto V. When the characteristic of &k is positive, this
rational mapping is not necessarily birational, i.e. g being a generic
point of G over k, k(my(g)) is a finite, purely inseparable extension of
k(gP,). Let L be the maximal connected linear normal algebraic sub-
group of G and D the smallest normal algebraic subgroup of G giving
rise to a linear factor group, which are assumed to be defined over
k (cf. [7]). D is contained in the center of G. We assume that an
Albanese variety A and a canonical mapping « of V into A are defined
over k. By a suitable translation if necessary, we may assume that
a(P,) = 0 (the identity element of the group A). Since V is nonsingular,
a is everywhere defined.
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1. Albanese varieties of homogeneous spaces. Let ¢g be a
generic point of G over k. Then we have k(g, gP,) = k(g, P,) = k(9)
and so k(g) contains Kk(gP,) and k(a(gP,). Hence we can define a
rational mapping B of G into A, defined over %k, by the relation B(g) =
a(gP)). Then we have B(g') = a(¢’P,) for any point ¢’ on G.

We start with several lemmas.

LEMMA 1. B is a set-theoretically surjective rational homomor-
phism of G onto A and « is a set-theoretically surjective rational
mapping of V onto A.

Proof. Denoting by ¢ the identity element of G, we have B(¢) =
a(eP)) = a(P) =0 and so B is a rational homomorphism. For any
point @ on A, there exist some points P, ---, P, on V such that a =
a(P) + --+ + a(P,). We have P, = ¢g,;P, with some ¢, in G and so
a(P;) = a(g;P;) = 5(g;). Then, as 8 is a homomorphism, we have a =
B(g,) + =+ + B(g) = Bgr+-- 9) = al(g, - -+ g)Fo).

COROLLARY. We have the imequality dim A < dim V.*

LEMMA 2. Let @ be the canonical rational mapping of G/H onto
G/LH such that 7w, =mwon,. Then (G/LH, ) ts an Albanese variety
of G/H.?

Proof. Since L contains the commutator subgroup of G, LH is a
normal algebraic subgroup of G. Moreover, as there exists a rational
homomorphism of G/L onto G/LH, G/LH is an abelian variety which
is generated by G/H and 7. Let f be a rational mapping of G/H into
an abelian variety B. We may assume that fom, is a rational homo-
morphism of G into B; then form, induces the 0-homomorphism on LH.
So there exists a rational homomorphism A of G/LH into B such that
fomy =Nomyy = NomwoTy, i.e. we have f = \om,

LemmA 3. The subgroup LH is the kernel of .

Proof. Let M be the kernel of 8. Since we have 8(h) = a(hP,) =
a(P,) = 0 for any point & on H, we have LH C M. Let g be a generic
point of G over k. Then, with a suitable power ¢ of the charac-
teristic of k, we have k(mx(g9)) D k(gP,) D k((ma(g)®).> Moreover

! Therefore, if an algebraic curve is a homogeneous space with respect to a
connected algebraic group, then the genus is equal to 0 or 1.

2 Of course, this lemma holds for any algebraic subgroup H of G.

3 If ¢=0, then (¢) is the identity transformation of the ambient spaces. If ¢>0,
then (¢) denotes the rational transformation of the ambient spaces induced by the
endomorphism of the universal domain: &£,
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(G/LH)? is an abelian variety with (7;(9))'” as a generic point over
% and (m,x(g))@ is rational over k((wz(g))”). Hence, by Lemmas 1 and
2 and by the universal mapping property of Albanese varieties, we
have &(m:x(g)) D k(a(gP,)) D k((m;2(9))®). On the other hand, since 8
induces a bijective rational homomorphism of G/M onto A, we have
k(m:5(9)) D k(7 u(9)) D k(a(gPy)) = k(B(g)). Hence k(mn(g)) is purely
inseparable and separable over k(m,(g)) and so we have k(m,,(g)) =
k(y(g)), which implies that LH = M.

Now we define the operation of G on A by goa = B(g) + a for
any point (g,a) on G X A. Then, by Lemma 1, A is a homogeneous
space with respect to G and the mapping a commutes with the oper-
ations of G on V and A, i.e. we have a(gP) = goa(P) for any point
(9, P) on G x V. In fact, denoting P = ¢’P, with some ¢ in G, we
have a(gP) = B(gg’) = B(g) + B(9") = B(9) + a(g'P;). Therefore we can
apply Proposition 1 of Rosenlicht [7] to the homogeneous spaces V and
A and we have the following results. Let /', be the graph of « in
V x A. Then, for any subvariety X of A, Y =pr,((V x X)-I",) is
defined and has the dimension = dimV — dim A + dim X. Moreover
the point set of Y coincides with the set-theoretical inverse image
{PeV; a(P)e X} of X by a.

For a point ¢ on A, we denote by W(a) the set {Pe V; a(P) = a},
i.e. the set-theoretical inverse image of ¢ by a. Then, by the above
results, W(a) = pr,((V x @)-I",) is a k(a)-closed algebraic set of
dimension = dim V' — dim A. We take an element g, of G such that
B8(g.) = a (see Lemma 1). For a point P = gP, in W(a), we have 8(g) =
a(P) = a and so, by Lemma 3, ¢ is in the coset g,LLH, i.e. we have
g — ¢g.lh with some ! in L and A in H; so we have P = g,lP,.
Conversely, for a point P = g,lP, with some [ in L, we have a(P) =
B(g.l) = B(g.) =@, i.e. Pis in W(a). Hence, as L is normal in G, we
gee that W(a) coincides also with the point set {lg,P,; le L}, i.e. the
L-orbit of g¢g,P, in V. Since L is connected, W(a) is a Fk(a)-closed
irreducible subvariety of V and is a homogeneous space with respect
to L. Since W(a) is the image of a linear algebraic group L by a
rational mapping, it has a trivial Albanese variety (i.e. the irregu-
larity of W(a) =0). For any points ¢ and &’ on A, it is easily verified
that there exists an everywhere defined, birational transformation which
maps W(a) onto W(a'); in fact, ¢,lP,— (9..9:Y9.lP, = g, 1P, is such a
transformation. Finally, if U is an irreducible subvariety of V, which
is a homogeneous space with respect to a connected linear algebraic
group, then, as U has a trivial Albanese variety, a(U) consists of a
single point and so U is contained in W(a(U)). Therefore we have
the following

THEOREM 1. For a point a on A, we denote by W(a) the point
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set {PeV; a(P)=a} wn V, i.e. the set-theoretical inverse image of
a by a. Then W(a) is a k(a)-closed irreducible subvariety, of
dimenston = dimV — dim A, and has a trivial Albanese variety.
Moreover W(a) s a homogeneous space with respect to L and s
maximal among all the subvarieties of V, which are homogeneous
spaces with respect to connected linear algebraic groups (im the sense
that such subvarieties are contained in some W(a)). For any points
a and o’ on A, there exists an everywhere defined, birational trans-
Sformation of W(a) onto W(a').

COROLLARY. If V is complete, then W(a) is a rational variety.

Proof. W(a) is a complete homogeneous space with respect to a
connected linear algebraic group L and so is rational (cf. [4] and [8]).

For a connected algebraic group G, we have easily the following
results (cf. [7]):

dim (Albanese variety of G) = 0+« G is linear = D = {e} .
dim (Albanese variety of G) =dim G =G is an abelian variety = L ={¢} .

Now we prove analogous results for homogeneous spaces.

TEEOREM 2. (a) The following three conditions are equivalent:

(i) dim A = 0;

(ii) V s comsidered as a homogeneous space with respect to a
connected linear algebraic group;

(iii) The tsotropy group of any point on V contains D.

(b) The following three conditions are equivalent:

(i) dimA =dimV;

(ii) V is considered as a homogeneous space with respect to an
abelian wvariety (i.e. V 1s the image of an abelian wvariety by a
bigective birational mapping (cf. [10]));

(ili) The tsotropy group of any point on V contains L.

Proof. For the assertion (iii) of (a) and (b), as L and D are
normal in G and all the isotropy groups are conjugate to H, we have
only to consider the isotropy group H of P,

(a) If dim A =0, then we have W(0) =V and V is a homogeneous
space with respect to L by Theorem 1. If V is a homogeneous space with
respect to a connected linear algebraic group, then clearly V has
a trivial Albanese variety, i.e. dimA = 0. By Lemma 3, we have
dimA =0 if and only if we have G = LH, i.e. if and only if H
contains D (cf. [7]).

(b) If dimA =dimV, then we have dim LH =dim H and H
contains the connected component of the identity element of LH and
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go contains L. Hence H is normal in G and V is considered as a
homogeneous space with respect to G/H, which is an abelian variety
as a homomorphic image of G/L by a rational mapping. If V is a
homogeneous space with respect to an abelian variety, clearly we have
dim V = dim A.

COROLLARY. In the case where k is algebraically closed and V
4s complete, V has a trivial Albanese variety +f and only if V is «
rational variety over k.

Proof. 1t follows from the fact that complete homogeneous spaces
with respect to connected linear algebraic groups are rational (cf. [4]
and [8]) and from Theorem 2.

2. Quotients with respect to normal algebraic subgroups.
Let N be a normal algebraic subgroup of G, defined over k. Then, by
[7], N operates regularly on V and the algebraic factor group G/N operates
on the variety W’ of N-orbits on V. It is easily verified that W' is a
pre-homogeneous space with respect to G/N. Then, by a theorem of
Weil, there exist a homogeneous space W, = W with respect to G/N,
which is birationally equivalent to W’ over k, and a generically sur-
jective separable rational mapping @y =@ of V to W, both defined
over k, which have the following properties: ¢ and P being independent
generic points of G and V over k, we have ¢(gP) = wy(9)p(P); if we
have @(P,) = @(F,) for generic points P, and P, of V over k, then we
have P, = gP, with some ¢ in N.*

The homogeneous space W with respect to G/N is also considered
as a homogeneous space with respect to G by the operation g@Q = 7,(9)Q
for any point (g, @) on G x W. Then, as we have ¢(gP) = gp(P) for
independent generic points g and P of G and V over k&, we can also
apply Proposition 1 of [7] to the homogeneous spaces V and W and we
have the following results on W and ¢. ¢ is an everywhere defined,
surjective separable rational mapping, defined over %k, and, for any point
(9, P) on G x V, we have 7y(9)p(P) = gp(P) = ¢(gP). Let I', be the
graph of @ in V x W. Then, for any subvariety W, of W, V, =
pr,((V x W)-I',) is defined and has the dimension =dim V — dim W +
dim W,. Moreover the point set of V, coincides with the set-theoretical
inverse image {Pe V; o(P)e W} of W, by o.

We show that the isotropy group of @(P,) in G is the subgroup
NH. Let g be an element of the isotropy group, i.e. we have gp(P,) =
o(gP,) = p(P,). Taking a generic point ¢’ of G over k(g), we have
mcent paper [q], Rosenlicht has shown the existence of a ‘‘quotient

space V/N " defined over k which is a homogeneous space with respect to G/N. We
may take this V/N as Wy.
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o(g'gPy) = ¢(¢’P,) and so ng'gP, = ¢'P, with some » in N. As N is
normal in G, we see that g is in NH. The converse assertion is trivial
by the definition of the operation of G on W. Hence there exists a
bijective rational mapping of G/NH onto W and W has the dimension =
dim G — dim NH.

For a point @ on W, we denote by X(Q) the set {Pe V; ¢(P) = Q},
i.e. the set-theoretical inverse image of @ by @. Then, by the above
results, X(Q) =pr,(V x Q):I",) is a k(Q)-closed algebraic set of
dimension = dim V — dim W = dim NH — dim H. If P=gP, and P’ =
¢9'P, are any two points on X(Q), then, as we have o(gP,) = ¢(g'P,),
9~ '¢’ is in NH and so we have P’ = n'P with some #’ in N. Conversely,
for any point P in X(Q) and any point »' in N, we have ¢(n'P) =
Tx(n)p(P) = @ and so #'P is in X(Q). Hence X(Q) is the N-orbit of
any point in it.

Now we assume that N is connected. Then, clearly, X(Q) is a
k(Q)-closed irreducible subvariety of V and is a homogeneous space with
respect to N. Moreover, for any points @ and @ on W, there exists
an everywhere defined, birational transformation of X(Q) onto X(Q').
Therefore we have the following

THEOREM 3. Let N be a connected normal algebraic subgroup of
G, defined over k. Then there exist a homogeneous space Wy with
respect to the algebraic factor group G/N, defined over k and of
dimension = dim G — dim NH, and an everywhere defined, surjective
separable rational mapping @y of V onto Wy, defined over k, which
have the following properties’ For a point @ on Wy, we denote by
Xy(Q) the point set {PeV; pu(P) = Q} in V, i.e. the set-theoretical
wnverse tmage of Q by @y. Then Xy(Q) is a k(Q)-closed irreducible
subvariety of V, of dimension = dimV — dim W, = dim NH — dim H,
and ts a homogeneous space with respect to N. For any points Q
and Q' on Wy, there exists an everywhere defined, birational trans-
Jormation of XH(Q) onto XH(Q).

We consider the case where N = L. Then the homogeneous space
W, with respect to G/L is an abelian variety (ef. [10]) and, as « is
L-invariant, we can prove that there exists a bijective birational
mapping @ of W, onto A such that @ = pop,;. Hence Theorem 1 also
follows from Theorem 3. Next we consider the case where N = D,
Then W, is a homogeneous space with respect to the connected linear
algebraic group G/D and so W, has a trivial Albanese variety. On the
other hand, for any point @ on W,, X,(Q) is a homogeneous space with

5 Wy is also a homogeneous space with respect to G and ¢y commutes with
the operations of G on V and Wy.
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respect to a connected commutative algebraic group D and so there
exists a bijective birational mapping of a connected commutative algebraic
group onto X,(Q) (cf. [10]). Consequently there exists a birational
mapping of the direct product of an abelian variety and a rational variety
to Xp(Q) (ef. [7]). Hence we have the following

ProrosiTiON 1. W, is an Albanese variety of V and ¢, is a
canonical mapping. If V is complete, then W, is a rational variety
and X,(Q) is birationally equivalent to the direct product of an abelian
variety and a rational variety.

3. Certain conditions on transformation groups. It is easily
verified that there exists a connected algebraic group G’, which is a
homomorphic image of G by a rational mapping, such that V is a
homogeneous space with respect to G’ and G’ operates on V effectively.
Such a group G’ has the several properties which follow from the
corresponding properties of G: for example, the connectedness of the
isotropy group of any point on V, the solvability of the maximal con-
nected linear algebraic subgroup and the property that G is generated
by an abelian variety and a linear algebraic group.

ProposITION 2. If G operates on V effectively, then we have
(1) HNG = {e}, where C is the center of G.

(2) H is linear.

(3) The Albanese variety of G is isogenous to A.°

Proof. Theassertion (1)istrivial. Aswehave HNDCcHNDcCHNC
(H, is the connected component of the identity element of H), we have
H,N D ={e}. Hence H, is isogenous to the algebraic subgroup H,D/D
of a linear algebraic group G/D; so H, and H are linear. Then, as L
contains H,, G/L (= the Albanese variety of G) is isogenous to G/LH,
which is isogenous to A by Lemma 3.

ProposiTioN 3. If V is complete, then V is considered as a homo-
geneous space with respect to a connected algebraic group G*, which is
the homomorphic image of G by a rational mapping and is generated
by an abelian variety and a connected linear algebraic group. If k is
a finite field, then we have the same assertion.

Proof. Since D is contained in C the connected component (L N D),
of the identity element of L ND is solvable and so, if V is complete,

6 Of course, the assertions (1) and (2) are also true for the isotropy group of
any point on V.
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any element of (L N D), operates trivially on V (cf. [2]). Hence V is
considered as a homogeneous space with respect to the algebraic factor
group G/(L N D),, which is generated by an abelian variety and a linear
group (cf. [7]). If % is finite, then G itself is generated by an abelian
variety and a linear group (cf. [1]).

ProprosiTION 4. We assume that V is considered as a homogeneous
space with respect to a connected algebraic group G*, which is gener-
ated by an abelian variety A* and a connected linear algebraic group
L*, both defined over k. (Thts is the case ©f V 1s complete or k is
finite (Proposition 3).) Then there exist a homogeneous space W* with
respect to L*, defined over £ and of dimension = dim V — dim A, and
an everywhere defined, surjective separable rational mapping ¢* of V onto
W*, defined over k, which have the following properties. For a point
Q* on W*, we denote by X*(Q*) the point set {PeV; ¢*(P) = Q*}
in V, i.e. the set-theoretical inverse image of @* by ¢*. Then X*(Q%)
is a k(Q*)-closed irreducible subvariety of V and there exists a bijective
birational mapping of an abelian variety isogenous to A onto X*(Q%).
For any points @* and Q* on W*, there exists an everywhere defined,
birational transformation of X*(Q*) cnto X*(Q*').

Proof. By the remark stated in the beginning of §3, we may
replace G* by a homomorphic image G’ of G* by a rational mapping,
which operates on V transitively and effectively and is generated by
an abelian variety A’ and a connected linear algebraic group L/, both
defined over k. Then, as A’ is contained in the center of G’, we have
A'NH' ={¢} (H' is the isotropy group of P, in G’ and ¢ is the
identity element of G') and the Albanese variety A’ of G’ is isogenous
to A (see Proposition 2). We apply Theorem 3 to the normal algebraice
subgroup A’ of G’ and put W* = W,. Then, as G’/A’ is the homo-
morphic image of L’ and so of L* by rational mappings, the homogeneous
space W* with respect to G'/A’ is also a homogeneous space with
respect to L*. The dimension of W* is equal to dim G’ — dim A’H’ =
dim G’ — dim A’ — dim H' = dim V — dim A. Moreover, for a point Q*
on W* X*@*) = X,(Q*) is a homogeneocus space with respect to A’
and, as the intersection of A’ and the isotropy group of any point on
V in G’ consists of a single element ¢’, there exists a bijective birational
mapping of an abelian variety isogenous to A’ onto X*(Q*) (cf. [10]).

COROLLARY. In the case where V is complete, W* 1is a rational
variety over k and X*(Q*) is an abelian variety over k(Q*) isogenous
to A.

Proof. It follows from Corollary of Theorem 2.
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We consider the case where L is solvable over k. Then there
exists a cross section o of W, to V with respect to ¢, (cf. [7])
and so we can prove that, for a generic point @ of W, over k, X,(Q)
coincides with the orbit Lo(Q) and contains a generic point lo(Q) of
V over k and we have k(lo(Q)) = k(lo(Q), @). Moreover, as a homo-
geneous space with respect to a connected solvable group L, Lo(Q) is
a rational variety over k(Q) (cf. [8]). Hence we have the following

PROPOSITION 5. If L is solvable, then V is birationally equivalent
to the direct product of the Albanese variety and a rational variety.

On the other hand, we have the following

PROPOSITION 6. If V is complete and L is solvable, then there
exists a bijective birational mapping of an abelian variety onto V.

Proof. L has a fixed point P=gP, on V (cf. [2]) and so L =
9 'Lg is contained in H. Then the assertion follows from Theorem 2 (b).

4, Rational points over finite fields. Finally we consider the
case where k is a finite field with ¢ elements. In this case, if V, G
and the operation of G on V are all defined over %k, then there exist a
rational point P, on V over &k (cf. [5]) and an Albanese variety (4, «)
of V defined over k. Moreover G is generated by an abelian variety
and a connected linear algebraic group, both defined over k. For a
variety U defined over k, we denote by N,(U) the number of rational
points on U over k. Let W* be the variety defined in Proposition 4,
which is a homogeneous space with respect to a connected linear
algebraic group defined over k. Then we have the following

THEOREM 4. We have N, (V) = N, (A)-N(W*).

Proof. We use the same notations as in the proof of Proposition
4, l.e. G = A’-L’' is a connected algebraic group, defined over &,
which operates on V transitively and effectively. Here A’ is an abelian
variety isogenous to A over k and L’ is a connected linear algebraic
group defined over k. For a rational point P on V over k, we have
(p*(P))@ = ¢p*(P?) = @*(P), i.e. p*(P) is a rational point on W* over
k.” Hence, denoting by QF, ---, QF (t = N, (W*)) all the rational points
on W* over k, we see that each rational points on V over k is in one
and only one X*(Q)(¢ =1, --+,¢t). Since X*(QF) is a homogeneous
space with respect to A’ defined over a finite field & = k(Q}), there exists
a rational point P, on X*(Q}) over k (cf. [5]). Then, as the intersection
of A’ and the isotropy group of P, in G’ consists of a single point ¢’
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(see Proposition 2), the mapping a’ — a'P; of A’ onto X*(Q}) is bijective
and rational over k. So we have N (X*(Q})) = N(A4’), which is equal
to N,(A), as A’ is isogenous to A over k. Hence we have N, (V) =
N(4)-N(W*).

Moreover, if we assume that V is complete and W* is rational
over k (cf. Corollary of Theorem 2), then we see easily that the con-
jecture of Lang and Weil on the zeros of the congruence zeta-function
of V follows from Theorem 4 (cf. [6]).
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