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In this note the following is proved: Suppose R is a finite-
dimensional algebra over an algebraically closed field F' of
characteristic 0 whose associator satisfies 4(y, x, x) = 4(x, ¥, %)
+ [y, =], ] and (%, x, %) = 0. If R is simple and non-nil then
R is iso-morphic to F.

We call it Theorem B, and prove it below.

In [3] nonassociative algebras satisfying identities of degree three
were studied and it was shown that relative to quasi-equivalence any
algebra satisfying such an identity (subject to some rather weak ad-
ditional hypotheses) must in fact satisfy at least some one of seven
particular identities; each of degree three. In this note we concern
ourselves with one of these seven residual cases; namely the identity

8] 4y, x, x) = 4=, ¥, x) + [ly, =], «]

where the associator (x, y, 2) is defined by (%, ¥, 2) = (2y)z — x(yz) and
the commutator |z, y] by [x, ¥y] = 2y — yx for elements x,y,z of the
algebra.

Throughout the remainder of this note R will be a ring of char-
acteristic not two or three which satisfies (1) in addition to the follow-
ing identity:

(2) (@, 2, ) = 0.

The following result was established in [3]:

THEOREM A. Suppose R has an idempotent ¢ % 0,1. Then R s
not simple.

This reduces the study of simple rings to the consideration of
rings whose only nonzero idempotent is the identity element.

Ideals and Simple rings. A well-known consequence of (2) is
(3) (x,oc,y)+(x,y,x)+(y,x,x):0.

We define xoy = a2y + yx and proceed to simplify (1). We rewrite
1) as

(4) dyx* = dxoyx — 3(xy)x — z(xy) — (Yx)x + 2(yx)
and (3) as
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(5) 2y’ = w'oy + (xy)x + (yr)r — 2(yx) — x(2Y) .
Adding (4) and (5) we obtain
(6) 6yx’ = x’oy + 4dxoyxr — 2xoxy .
Finally we add and subtract 2xoyx to the right-hand member of (6)
giving us
(7) 6yx® = 6xroyx — 2xo(xoy) + x’oy .
Replacing = by «,+ «, in (7) and then using (7) to simplify the result
we find

6y(x,0®,) = 6x,0Y®, + 62,0y®, — 23,0 (x,0Y)
(8)

— 2my0 (oY) + (T,0%,)0Y .

We define the ring R* to be the same additive group as R but the
multiplication in R* is given by (x,y) = 1/2x0y. We set (z,y, 2)* =
(xoy)oz — xo(yoz) and note that R* is associative if and only if
(x,y,2)* =0 for all z,y,z¢c R.

LEMMA 1. Let L be the additive group generated by all (x,y, 2)*
where x,y,2€ R. Then L ts a left ideal of R.

Proof. First of all we consider y[(x,02,)o2;]. Then (8) (with =,
replaced by «,0x, and x, by x,) becomes
(9) 6y[(2,0 @) 0 @] = 6(2,0@,) oY@y + 6% 0 Y (X, 0X,) — 2(%,0%5) 0 (X30Y)
—2m, 0 [(x1° w)oy] + [(w0xs)0 Tsloy .

We use (8) to rewrite the second term of the right-hand member of
(9) as:
62,0 Y(%, 0 %) = 62,0 (%, 0Y%L,) + 6250 (%,0yx)) — 250 @0 (%,09)]
—2x;0[@,0 (w,09)] + @y0[(,0) oyl .
A substitution of this into (9) results in
6Y[ (20,0 2,) 0 5] = 6(,0 @) oY xs + 6350 (T, 0Yx,) + 6250 (X0 Yy)
(10) — 250 [@,0(2,y)] — 2x3°[x2°(901°?/)]
- Z(xloxz)o(ms"y) + (%3, T, 0%y, Y.
If we interchange 2, and 2, in (10) we obtain
6yl (x;0 ,) o xl] = 6(x,0®,) oYX, + 6T, 0 (T30 Y®L,) + 62,0 (X,0 Ys)
(11) — 2@,0[w;0 (X, 09)] — 2x,0[2,0 (s 0Y)]
— 2(x502;) 0 (X,0Y) + (24, Xy 0T, Y.
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Then subtracting (11) from (10) yields

62/(371, xzyxs)%_ - 6(%1, Xy ?/xs)":‘ =+ 6(%1, CE w3)+ + 6(?/.’231, Ly x3)+
— 2%y, Ty0Y, L) + 2(”3; @y, T 0Y)T
— 2(1,, X302, Yt A (@, B0y, Y) + (T, B0 Xy, Y)T

Thus yL < L and L is a left ideal of K.
THEOREM 1. L + LR is an ideal (two-sided) of R.

Proof. As is immediate from Lemma 1 it suffices to show that
R(LR) + (LR)YR< L + LR. Suppose z,,2,€ R,yc L. Then (x,x,y)te L
so that (x,0x)oy — w,0(x,0y)e L. But (z,0@,)oy and x,0x,y belong to
L + LR. Hence, x,0yx,€ L + LR, Next we interchange «x, and ¥ in

(8), obtaining
(12) 6y (, Y) = 6,02,y + 6y o X ¥, — 2,0 (x,0%)
— 2yo(x,0,) + (@ 0y)ou, .

But Lemma 1 along with the preceding remarks implies that each term
of the right-hand member belongs to L + LE. Hence, 2,(x,0y)e L + LR
but a(xy) e R(RL)Z L so that x,(yx,)e€ L + LE. Thus, we must also
have (yx)x,€ L + LR, since x,oyx,€ L + LR. Therefore R(LR) +
(LRYRC L + LR and L + LR is an ideal of R.

THEOREM 2. L 4s an ideal of L 4+ LR.

Proof. Since L is a left ideal of R we need only show that
L(LR)C L. Suppose ,, x,€ L,y B. Then (8) implies

(13) 2x,(v,y) + 2ay(2y) — (wox)ye L.

Considering that (z,, ,, )" and (x, ¥, ;)" belong to L we find

(14) (@ om)y — w(wy) € L .
and
(15) xz(xly) - xl(ny) elL.

Adding (13) and (14) we obtain x,(x,y) + 2x,(xy) € L. This along with
(15) implies that x,(xy)€ L or L(LR)C L, as was to be shown.

COROLLARY. If R is simple then either Rt is associative or L=R.

Proof. If R is simple then either L + LR =0 or L + LR = R.
In the first instance L = 0 so that R is associative while in the second
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L is an ideal of R. Hence, either L =0 or L = R.

Now suppose R is a simple finite-dimensional algebra over an
angebraically closed field F' of characteristic 0. Then R is power-
associative |3, Lemma 2] so that if R is nonnil, B must possess a
nonzero idempotent e. By Theorem A of the Introduction we must,
in fact, have ¢ = 1, the identity of K. A result of Albert’s [1] states
that R = F 1 + N where all the elements of N are nilpotent and N
is an ideal of R*. From this it is immediate that (x, y, 2)* € N for all
x,Y,2€ R so that LC N = R. Hence, L =0 and R* is associative.
But then R satisfies

2(y, x, ) = 2w, x, y) + [y, 2], =] (See [3]) .

Subtracting this relation from (1) we have
2(y; €, x) = 4(%, Y, OU) - 2('%., X, y)

which along with (3) implies that (x,¥,2) = 0. Hence, R is flexible
and the results of Theorem B follow from [2].
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