
Pacific Journal of
Mathematics

THE NILPOTENT PART OF A SPECTRAL OPERATOR. II

CHARLES ALAN MCCARTHY

Vol. 15, No. 2 October 1965



PACIFIC JOURNAL OF MATHEMATICS
Vol. 15, No. 2, 1965

THE NILPOTENT PART OF A SPECTRAL
OPERATOR, II

CHARLES A. MCCARTHY

Let T be a spectral operator on a Banach space, such that
its resolvent satisfies a mth order rate of growth condition.
If N be the nilpotent part of Γ, it is known that Nm = 0
on Hubert space. We show that Nm — 0 on an LP space
(1 < p < oo). Known examples show that iVm need not be zero
even on an uniformly convex space.

We will consider a bounded spectral operator T = \ \E(dX) + N

which operates on an Lp space (l-< p < oo). JE'(O) is the resolution of

the identity and N is the nilpotent part of Γ [1; pp. 333-334]. We

will denote by I a finite constant for which M^esSς-int | a(ξ) | ^

\a(ξ)E(dξ) sup I a(ξ) \ is true for all bounded Borel functions

α(f), [1; Theorem 7, p. 330].
Suppose that T satisfies an mth order rate of growth condition on

its resolvent: given any Borel subset σ of the spectrum of T, its
restriction Tσ to the range of E(σ) has σ as spectrum and we assume
that for I d ^ | Γ | + 1,

I (ζ - TV)-1! g ^[distance (ζ, σ)]-"

where K and m are constants independent of σ and ζ.

It is known that in Hubert space, this implies Nm = 0 [1; The-
orem 11, p. 337], and that in a reflexive Banach space Nm+1 = 0, but
in general no more [2; Theorem 3.1, p. 1226; Examples 4.4, p. 1230],
However, in the case of a reflexive Lp space, we will show that in
fact iVm = 0. It is immaterial whether we show Nm = 0 or JV*W = 0,
so that we may assume that p ^ 2. We will dispense with the
continual remarks that our Lp functions x(s) are defined for only almost
every s.

It is known that for any complex numbers \ u , λn and p Ξ> 2
we have

Σ I ̂ v | 2 Y / 2 ^ (2τr)
v=1 ' °̂

P/2
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where C(p) is independent of n and the choice of the λ's [3; Proposi-
tion 1].

Given ε > 0, let the spectrum of T be decomposed into n = O(ε~2)
Borel subsets σ19 , σn with each <τv contained in the disc | ζ — ζv | ^ ε,
and let Ev = .ί7(<7v). For a given function a?(«) in Lp, let λv(s) = (Evx)(s).
For each s, apply (1) to these λv(s) and then integrate over all s:

^ (2τr)-

PJ2

For each choice of θv we have (since ΣEV = /)

M-11 x I ̂  I (β ĴEfi + + β^ E'Ja? | ^ M| α | ,

so that upon performing the integrations in the middle of (2) we have

and

(3b) Λf-» I x \>£ C(p) jds(Σ I [Evx](s) ή .

Now in (3b), replace x by iVm« and apply the Holder inequality to the
sum on the right hand side to obtain

I Nnx Γ ^ C(p)Mp \ds Σ I [EJf xUβ) \p n{m~ι

( 4 ) J >=i ^

- C(p)Λf'Λ 'W-1 Σ I NmE,x \' .
V = l

It is a standard computation that

INmE vxI g 2 3mjK:Mε\E,x\ .

For completeness, we digress for a moment to include a proof: Let Z1

(=Γ V ) be the contour | ζ — ζv | = 2ε, so that any point of Γ is at least
ε away from σv, but no point of σv is further than 3ε from any point
in Γ. Then we have

= -±^ \ dζ(ζ - TJ-A (ζ -

and thus
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^ — [ I dζ I Kε-mM(2ey
2π JΓ

We now insert this estimate in (4) to obtain (with lumping all
inessential constants together)

Vll

=

Vll
Vll

C(p)M'n

cv/2-v

\ds

c
\ds

•M

V = l

n
^O 1 Γ IP

(Σ [E

p X p .

KMsγ \E^x\v

y i

(since p

(by

is 2)

3a)

Now we need only remember that n = O(ε~2) to see that

I JV^α i* = O(ε2) I OJ \p .

Since ε may be arbitrarily small, Nmx = 0 for all x, so Nm — 0 as
was to be proved.
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