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MONOTONE APPROXIMATION

O. SHISHA

How close can one approximate a monotone function by a
monotone polynomial of degree < n, or a convex function by
a convex polynomial of degree < n? This leads to the follow-
ing general question, Let © and n be given, and suppose a
real fuction f satisfies f*)(x) = 0 throughout a closed, finite
interval [a,b]. How close can one approximate f on [a, b] by
a polynomial of degree < n whose kth derivative, too, is = 0
there? We give an answer to the question.

2. THEOREM 1. Let k and p be integers, 1 < k = p, and let a
real function f satisfy throughout [a, b]

S x)z 0,
|F @) — fP(@) ] S M@ — 3],
X being a constant. Then for every integer n(= p) there exists a

real polynomial Q,(x) of degree’ < n such that
(a) Q¥F(x) =0 throughout |a, b],

(b) Max|f@) - Q@) = 2(L) G- K @m+1-v] .

3. To prove Theorem 1, we begin by quoting the following result
of J. Favard [2] and N. Ahiezer and M. Krein [1] which strengthens
a previous result of D. Jackson.

THEOREM 2. (Favard, Ahiezer-Krein) Let f (with period 2r)
map the reals into the reals, and satisfy for every real ,, x,

(1) lf(wz)_f(x1)|§7"ix2“x1|,

N being a constant. Then for n=0,1,2, -+, there exists a
trigonometric polynomial T, () = S ,as™ cos v + by sin va such that
MaXeg. - | f(@) — To(®) | < Mrr/2)[1/(n + 1)].

From Theorem 2 one obtains by the method of [3], pp. 13-14 the
following

THEOREM 3. Let f be a real function satisfying (1) throughout
[a, b], ) being a constant. Then for n=0,1,2, ..., there exists &

Received March 17, 1964,
1 By degree of a polynomial we mean its exact degree. (The degree of the poly-
nomial 0 is —1).
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polynomial P,(x) of degree = n such that

max|£(z) — P,()| =222 b -2

For future use, we make the following simple observation. (Com-
pare [3], p. 16).

LeMMA. Let f be a real function, continuous in [a,bd] and
differentiable in (a,b). Let m be an integer (=0), ¢,—.(%) a real
polynomial of degree < mn — 1, and let ¢ be such that | f'(x) — q,,(x)]
< ¢ throughout (a, b). Then there exists a polynomial P,(x) of degree
= n such that

b—a
2 — P <0 ¢
@) mex /@) — P < oy
To prove the lemma, set 7(x) = f(x) — qun_l(t)dt. Throughout

(@, b), |7"(x)| = ¢, and therefore, throughout a[a, b], |7r(x) — r(x,) ] <
elx, — a,|. By Theorem 3, there exists a polynomial 7,(x) of degree
< msuch that max,<.<; | 7(®) —7,(®)| < e(x/4)(b—a)/(n+1). Setting P,(x)=

T (x) + qun_l(t)dt, we obtain (2).

From Theorem 3 and the Lemma one gets readily (cf. [3], pp.
16-17) the following

THEOREM 4. Let f be a real function satisfying throughout [a, b],
for some constant integer p(= 0) and some constant \,

[P @) — FO@) [ = Mg — @]

Then for every integer m(= p) there exists a polynomial P, (x) of
degree < n such that

max | /@) — P =\ 2o — o] [H 0+ 1-9]"

3. Proof of Theorem 1. Let n be an integer = p. Set f,(x) =
F9(x) + M(z/A) (b — @) II12-,(r +1—v)]"". Then throughout [a, b],
| £ (wy) — Fi7"(®)]| < N|@, —@,|. By Theorem 4, there exists a
real polynomial P,_,(x) of degree < » — k such that

max |£,(@) — P, o) | <3 T 6-a] [Aa+1-»]

eszs

So, throughout [a, b], P,_.(x) = f*(x) = 0. Let
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@@ =[SO —ap|+ " |7 Pesteded, - di,

v=0 a

(t,+, being here and below, x). Then Q,(x) is a real polynomial of
degree = n, and Q*(x) = P,_,(x) = 0 throughout [a, b]. Furthermore,
throughout that interval, we have

fla) = [kzlf(” (@) (= — a)v] + SZ"“ S:k e S:Zf(k)(tl)dtl cee dty,,
and therefore
@ - @@= " e - o) a - an

<nl50-a] o] g

< 2x(%)”"‘“(b — a)“l[k! H+1- u)]“l

4. The following Theorem 5 deals with a somewhat more general
situation than that of Theorem 1.

THEOREM 5. Let k and p be integers, 1 < k =< p, and let a real
Junction f satisfy throughout [a, b]

SR =20,
|fP() | = M,

M being a constant. Let w(x) be the modulus of continuity of f©
in [a,b]l. Then for every integer n (= p) there exists a real poly-
nomial Q,(x) of degree =< m such that

(a) Q¥ (x) = 0 throughout [a, b],
max | f(z) — Qu.(x) |

® =14 D)2 0 - okl 01 -0 o(258)

(an “empty” product means always 1).
Theorem 5 is proved by means of the following Theorem 6, in the
same way that Theorem 1 was proved by means of Theorem 4.

THEOREM 6. Let f be a real function having a bounded pth
(p = 0) derivative throughout [a,b]l. Let w(x) be as in Theorem 5.
Then for every integer m (= p) there exists a polynomial P,(x) of
degree =< m such that throughout [a, b]
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- pen= 1+ S50 -l o1 o 5.

5. Theorem 6 follows from Theorem 3 by Jackson’s method ([3],
pp. 15~-18). For the reader’s convenience we hereby prove Theorem
6 in full. We do it by induction on p. Suppose first p = 0. Let n
be an integer (= 0). Let #(x) be the function whose graph is obtained
by joining successively the points (¢,, f(&,) (¢# =0,1, ..., + 1) of the
x, y plane, where &, =a + [(b — a@)/(n + 1)]v. For v=1,2, -, m+1
we have | #(&,) — ¢(§,_) | = 0[(b — @)/(n + 1)]. Hence, if a = x, <2, =),
then

‘95(902)"‘975(961” < %+1w<b—a>.
Ly — @, b—a \n+1

By Theorem 3, there exists a polynomial P,(x) of degree = n such
that throughout [a, 0]

. <n+l (b—a\mb—a 7 (b—a
() P”(x)l“b—a‘”(n+1>4n+1 4w<n+1>'

Clearly, for every z€|a, b], |f(®) — é(x)| < o[(b — a)/(n + 1)]. There-
fore, throughout [a,b], |f(z) — P, ()| = [1 + (#/4)]w[( — a)/(n + 1)].
This proves Theorem 6 when p = 0. Suppose the theorem was proved
for some p — 1 (= 0). We shall prove it for p. Let % be an integer
(= p). By our hypothesis there exists a polynomial P,_(x) of degree
= n — 1 such that throughout {a, b]

|f'(®) — Ppa(®) |
(e 0 -o] T w1 -] of55y):

By the lemma, there exists a polynomial P,(x) of degree = n, such
that

max |f(z) — P.(@)|

(e plie-oflLori-a]w(25e).

This completes the proof.
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