Pacific Journal of Mathematics

CONVOLUTION IN FOURIER-WIENER TRANSFORM

JAMES JUEI-CHIN YEH

Vol. 15, No. 2

October 1965

CONVOLUTION IN FOURIER-WIENER TRANSFORM

J. Yeh

Let C be the Wiener space and K be the space of complex valued continuous functions on $0 \le t \le 1$ which vanish at t = 0. The Fourier-Wiener transform of a functional F[x], $x \in K$, is by definition

Let E_0 be the class of functionals F[x] of the type

$$F[x] = arPsi_F igg[\int_0^1 lpha_1(t) dx(t), \, \cdots, \, \int_0^1 lpha_n(t) dx(t) igg]$$

where $\mathscr{O}_{F}(\zeta_{1}, \dots, \zeta_{n})$ is an entire function of the *n* complex variables $\{\zeta_{j}\}$ of the exponential type and $\{\alpha_{j}\}$ are *n* linearly independent real functions of bounded variation on $0 \leq t \leq 1$. Let E_{m} be the class of functionals which are mean continuous, entire and of mean exponential type.

We define the convolution of two functionals F_1 , F_2 to be

$$(F_1 * F_2)[x] = \int_{\sigma}^{w} F_1 \bigg[rac{y+x}{2^{1/2}} \bigg] F_2 \bigg[rac{y-x}{2^{1/2}} \bigg] d_w y \;, \;\; x \in K \;.$$

Then if $F_1, F_2 \in E_0$ or $F_1, F_2 \in E_m$, the convolution of F_1, F_2 exists for every $x \in K$ and furthermore

$$G_{F_1} * G_{F_2}[z] = G_{F_1}\left[rac{z}{2^{1/2}}
ight] G_{F_2}\left[-rac{z}{2^{1/2}}
ight], \ z \in K.$$

Let K be the space of complex-valued continuous functions defined on $0 \leq t \leq 1$ which vanish at t = 0 and let C be the Wiener space, namely the subspace of K which consists of real-valued elements of K. Let $F[x] = F[x(\cdot)]$ be a functional which is defined throughout K. If it exists, the functional

(1.1)
$$G[y] = \int_{\sigma}^{w} F[x + iy] d_{w}x , \quad y \in K$$

is called the Fourier-Wiener transform of F[x].

The first class E_0 of functionals is defined as follows: A functional F[x] belongs to E_0 if

(1.2)
$$F[x] = \mathscr{Q}_{F}\left[\int_{0}^{1} \alpha_{1}(t) dx(t), \cdots, \int_{0}^{1} \alpha_{n}(t) dx(t)\right]$$

Received March 30, 1964. This research was supported in part by the National Science Foundation GP 1620. The author wishes to thank Professors R. H. Cameron and W. T. Martin for their suggestions in the writing of this paper.

where $\Phi_F(\zeta_1, \dots, \zeta_n)$ is an entire function of the *n* complex variables $\{\zeta_j\}$ of exponential type

$$(1.3) \qquad | \varPhi_F(\zeta_1, \cdots, \zeta_n) | < M e^{a(|\zeta_1| + \cdots + |\zeta_n|)}$$

and $\alpha_i(t)$ are *n* linearly independent real functions of bounded variation on $0 \leq t \leq 1$. The function φ_F as well as the constants *M* and a depend on *F*.

The second class E_m consists of functionals F[x] which are mean continuous, entire and of mean exponential type: that is, E_m is the class of functionals satisfying the following three conditions:

 $1^{\circ} \lim_{n \to \infty} F[x^{(n)}] = F[x]$ holds for all x and $x^{(n)}$ in K for which $\lim_{n \to \infty} \int_{0}^{1} |x^{(n)}(t) - x(t)|^{2} dt = 0.$

2° $F[x + \lambda y]$ is an entire function of the complex variable λ for all x and y in K; and

 3° there exist positive constants $A_{\scriptscriptstyle F}$ and $B_{\scriptscriptstyle F}$ depending on F such that

(1.4)
$$|F[x]| \leq A_F \exp \left\{ B_F \left(\int_0^1 |x(t)|^2 dt \right)^{1/2} \right\}$$
 for all $x \in K$.

According to Theorems 1 and A, [3], if F[x] belongs to E_0 or E_m , its transform G[y] exists for all $y \in K$ and belongs to the same class.

We now define the convolution of two functionals $F_1[x]$ and $F_2[x]$ to be

(1.5)
$$(F_1 * F_2)[x] = \int_a^w F_1 \left[\frac{y+x}{2^{1/2}} \right] F_2 \left[\frac{y-x}{2^{1/2}} \right] d_w y , \quad x \in K$$

if the integral in the right side exists.

The result of this paper is stated in the following two theorems:

THEOREM I. If $F_1[x], F_2[x] \in E_0$, the convolution (1.5) exists for every $x \in K$. Moreover, the Fourier-Wiener transform $G_{F_1*F_2}[z]$ of (1.5) exists and satisfies

(1.6)
$$G_{F_1*F_2}[z] = G_{F_1}\left[\frac{z}{2^{1/2}}\right] G_{F_2}\left[-\frac{z}{2^{1/2}}\right]$$
 for every $z \in K$.

THEOREM II. Exactly the same as in Theorem I holds for any two functionals belonging to E_m .

Theorem I and II will be proved in §2 and §3 respectively. From these theorems follows the Parseval relation of [3].

2. NOTATION. We introduce the notation $\mathcal{O}([\zeta_j]_n)$ for the function $\mathcal{O}(\zeta_1, \dots, \zeta_n)$ of *n* complex variables, $\mathcal{O}([\zeta_j]_n, [\zeta'_j]_m)$ for the function $\mathcal{O}(\zeta_1, \dots, \zeta_n, \zeta'_1, \dots, \zeta'_m)$ of n + m complex variables. In particular, $\mathcal{O}([\zeta_j]_n, \zeta')$ stands for the function $\mathcal{O}(\zeta_1, \dots, \zeta_n, \zeta')$ of n + 1 complex variables.

We first make a few remarks on the entire functions of exponential type.

REMARK 1. If $\mathcal{P}_1([\zeta_j]_n)$, $\mathcal{P}_2([\zeta_j]_n)$ are two entire functions of exponential type, the two factors in the right hand and consequently the left hand of

(2.1)
$$\Phi([\zeta_j]_n, [\zeta'_j]_n) = \Phi_1([2^{-1/2}(\zeta_j + \zeta'_j)]_n) \Phi_2([2^{-1/2}(\zeta_j - \zeta'_j)]_n)$$

are entire functions of exponential type of the *n* complex variables ζ_1, \dots, ζ_n for fixed $\zeta'_1, \dots, \zeta'_n$ and, similarly, of the *n* complex variables $\zeta'_1, \dots, \zeta'_n$ for fixed ζ_1, \dots, ζ_n .

REMARK 2. If $\varphi(u_1, \dots, u_n, \zeta)$ is continuous in the n + 1 variables for $-\infty < u_j < \infty$, $j = 1, 2, \dots, n$ and $\zeta \in R$, a region in the complex plane, and is analytic in $\zeta \in R$ for fixed u_1, \dots, u_n , the uniform convergence over R of the integral

$$\int_{-\infty}^{\infty}\cdots\int_{-\infty}^{\infty}\varphi(u_1,\cdots,u_n,\zeta)du_1\cdots du_n$$

implies that the integral is an analytic function of $\zeta \in R$.

REMARK 3. If $\mathcal{O}([\zeta_j]_n, [\zeta'_j]_n)$ is an entire function of exponential type of 2n complex variables, the integral

$$\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \varPhi([\zeta_j]_n, [\zeta'_j]_n) \exp\{-\zeta_1^2 - \cdots - \zeta_n^2\} d\zeta_1 \cdots d\zeta_n$$

is an entire function of exponential type of the *n* complex variables $\zeta'_1, \dots, \zeta'_n$.

Proof of Theorem I. For $F_1[x], F_2[x] \in E_0$,

(2.2)
$$F_i[x] = \mathscr{Q}_i\left(\left[\int_0^1 \alpha_j(t)dx(t)\right]_n\right), \qquad i = 1, 2$$

where $\Phi_i([\zeta_j]_n)$, i = 1, 2, are two entire functions of exponential type of *n* complex variables. We first prove the theorem for the special case where $\{\alpha_j(t)\}$ are an orthonormal set on $0 \leq t \leq 1$. We quote a result by Paley and Wiener [7] which states that for any orthonormal set of real functions $\{\alpha_j(t)\}$ of bounded variation on $0 \leq t \leq 1$, the equality J. YEH

(2.3)
$$\int_{\sigma}^{w} \Psi\left(\left[\int_{0}^{1} \alpha_{j}(t) dx(t)\right]_{n}\right) d_{w}x = \frac{1}{\pi^{n/2}} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \Psi([u_{j}]_{n}) \times \exp\left\{-u_{1}^{2} - \cdots - u_{n}^{2}\right\} du_{1} \cdots du_{n}$$

holds for every function $\Psi([u_j]_n)$ for which the integral on the right side exists as an absolutely convergent Lebesgue integral. By (1.5), (2.2), (2.1), (2.3),

(2.4)

$$(F_1 * F_2)[x] = \int_{\sigma}^{w} \mathscr{O}\left(\left[\int_{0}^{1} \alpha_j(t) dy(t)\right]_n, \left[\int_{0}^{1} \alpha_j(t) dx(t)\right]_n\right) d_w y$$

$$= \frac{1}{\pi^{n/2}} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \mathscr{O}\left([u_j]_n, \left[\int_{0}^{1} \alpha_j(t) dx(t)\right]_n\right)$$

$$\times \exp\left\{-u_1^2 - \cdots - u_n^2\right\} du_1 \cdots du_n$$

for every $x \in K$, where the last integral exists because $\mathscr{O}([\zeta_j]_n, [\zeta'_j]_n)$ is an entire function of exponential type in $\{\zeta_j\}$ for fixed $\{\zeta'_j\}$ according to Remark 1. This proves the existence of $(F_1 * F_2)[x]$ for every $x \in K$.

Now according to Remark 3,

$$\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \varPhi([\zeta_j]_n, [\zeta'_j]_n) \exp{\{-\zeta_1^2 - \cdots - \zeta_n^2\}} d\zeta_1 \cdots d\zeta_n$$

is an entire function of exponential type of $\{\zeta'_j\}$, and hence, Theorem 1, [3] applies to the last member of (2.4). Thus the Fourier-Wiener transform of $(F_1 * F_2)[x]$ namely $G_{F_1 * F_2}[z]$, exists for every $z \in K$ and is given by (1.1) as

(2.5)

Now since

$$\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \varPhi([\zeta_j]_n, [\zeta'_j + \zeta''_j]_n) \exp\{-\zeta_1^2 - \cdots - \zeta_n^2\} d\zeta_1 \cdots d\zeta_n$$

is an entire function of exponential type of $\{\zeta'_j\}$ for fixed $\{\zeta''_j\}$, (2.3) is applicable to the last integral of (2.5). Thus

$$egin{aligned} G_{{\scriptscriptstyle F_1}*{\scriptscriptstyle F_2}}[z] &= rac{1}{\pi^n} \int_{-\infty}^\infty \cdots \int_{-\infty}^\infty arPhi\Big([u_j]_n, \Big[v_j + i \int_0^1 lpha_j(t) dz(t) \Big]_n \Big) \ & imes \exp \left\{ -u_1^2 - v_1^2 - \cdots - u_n^2 - v_n^2
ight\} du_1 \cdots du_n dv_1 \cdots dv_n \ &= rac{1}{\pi^n} \int_{-\infty}^\infty \cdots \int_{-\infty}^\infty arPhi_1\Big(\Big[2^{-1/2} \Big(u_j + v_j + i \int_0^1 lpha_j(t) dz(t) \Big) \Big]_n \Big) \ & imes \, arPhi_2\Big(\Big[2^{-1/2} \Big(u_j - v_j - i \int_0^1 lpha_j(t) dz(t) \Big) \Big]_n \Big) \ & imes \, \exp \left\{ -u_1^2 - v_1^2 - \cdots - u_n^2 - v_n^2 \right\} du_1 \cdots du_n dv_1 \cdots dv_n \ . \end{aligned}$$

734

Let

$$egin{array}{ll} u_{j}'=2^{-1/2}(u_{j}+v_{j}) \;, \ v_{j}'=2^{-1/2}(u_{j}-v_{j}) \;, & j=1,2,\cdots,n \end{array}$$

and apply (2.3) to the result of this transformation. By (2.2), (1.1) we have

$$egin{aligned} G_{{}_{F_1*F_2}}\![z] &= \left\{\!\!\int_{\sigma}^w\!\!arPhi_1\!\!\left(\!\!\left[\int_{0}^1\!\!lpha_j(t)dx(t) + rac{i}{2^{1/2}}\int_{0}^1\!\!lpha_j(t)dz(t)
ight]_n\!
ight)\!\!d_wx
ight\} \ & imes \left\{\!\!\int_{\sigma}^w\!\!arPhi_2\!\!\left(\!\!\left[\int_{0}^1\!\!lpha_j(t)dx(t) - rac{i}{2^{1/2}}\int_{0}^1\!\!lpha_j(t)dz(t)
ight]_n\!
ight)\!\!d_wx
ight\} \ &= G_{{}_{F_1}}\!\!\left[rac{z}{2^{1/2}}
ight]\!G_{{}_{F_2}}\!\left[-rac{z}{2^{1/2}}
ight]. \end{aligned}$$

This proves Theorem I for the special case.

In the general ease where $\alpha_i(t)$ are *n* linearly independent real valued functions of bounded variation on $0 \leq t \leq 1$, according to the argument on p. 493, [3], we can write $F_i[x]$, i = 1, 2 defined by (2.2) as

$$F_i[x] = arPhi_i^\star \Bigl(\left[\int_0^1 lpha_j'(t) dx(t)
ight]_n \Bigr)$$
 , $i=1,2$

where $\Phi_i^{\star}([\zeta_j]_n)$ are entire functions of exponential type of $\{\zeta_j\}$ and $\alpha'_j(t)$ are *n* orthonormal functions of bounded variation on $0 \leq t \leq 1$. Now the result for the special case applies and the theorem is proved.

- 3. LEMMA. Let $\{F_{1,n}[x]\}, F_{1}[x], \{F_{2,n}[x]\}, F_{2}[x]$ be such that
- 1° (3.1) $\lim_{n\to\infty} F_{i,n}[x] = F_i[x]$ for every $x \in K$, i = 1, 2.

2° the Fourier-Wiener transform exists for every $F_{i,n}[x]$ $n = 1, 2, \dots, i = 1, 2$; the convolution $(F_{1,n} * F_{2,n})[x]$ exists, its Fourier-Wiener transform also exists and satisfies

$$(3.2) G_{F_{1,n}*F_{2,n}}[z] = G_{F_{1,n}}\left[\frac{z}{2^{1/2}}\right]G_{F_{2,n}}\left[-\frac{z}{2^{1/2}}\right],$$

for every $z \in K$, for $n = 1, 2, \cdots$; and

3° (3.3) $|F_{i,n}[x]| \leq A \exp \{B \mid ||x|||^{2-\varepsilon}\}, \quad n = 1, 2 \cdots, i = 1, 2$ where $A, B, >0, 2 > \varepsilon > 0$ and $|||x||| = \max_{0 \leq t \leq 1} |x(t)|$. Then the Fourier-Wiener transforms of $F_1[x], F_2[x]$, the convolution of $F_1[x], F_2[x]$ and the Fourier-Wiener transform of the convolution exist and (1.6) holds. J. YEH

Proof of the lemma. By (1.5), (1.1), the equality (3.2) can be written as

$$(3.4) \quad \begin{aligned} & \int_{\sigma}^{w} \Bigl\{ \int_{\sigma}^{w} F_{1,n} \Bigl[\frac{y + x + iz}{2^{1/2}} \Bigr] F_{2,n} \Bigl[\frac{y - x - iz}{2^{1/2}} \Bigr] d_{w} y \Bigr\} d_{w} x \\ & = \Bigl\{ \int_{\sigma}^{w} F_{1,n} \Bigl[x + \frac{iz}{2^{1/2}} \Bigr] d_{w} x \Bigr\} \Bigl\{ \int_{\sigma}^{w} F_{2,n} \Bigl[x - \frac{iz}{2^{1/2}} \Bigr] d_{w} x \Bigr\} , \quad n = 1, 2, \cdots . \end{aligned}$$

We prove the lemma by justifying the passing to the limit under the integral signs on both sides of (3.4). To do this, we observe that for any p complex numbers ζ_1, \dots, ζ_p ,

$$(3.5) \qquad \left|\sum_{k=1}^{p} \zeta_{k}\right|^{2-\varepsilon} \leq \left(p \max_{k} \left\{ |\zeta_{1}|, \cdots, |\zeta_{p}| \right\} \right)^{2-\varepsilon} \leq p^{2} \sum_{k=1}^{p} |\zeta_{k}|^{2-\varepsilon} .$$

An estimate of the first integrand on the right hand side of (3.4) is given by (3.3) and (3.5) with p = 2:

$$(3.6) \qquad \left|F_{1,n}\left[x+\frac{iz}{2^{1/2}}\right]\right| \leq A \exp\left\{4B(|||x|||^{2-\varepsilon}+|||z|||^{2-\varepsilon})\right\}.$$

Since $\int_{\sigma}^{w} \exp \{4B \mid ||x|||^{2-e}\} d_{w}x$ is finite according to [4], the right side of (3.6) is integrable with respect to x over the entire Wiener space for fixed z. By (3.1) with dominated convergence and by (1.1)

(3.7)
$$\lim_{n \to \infty} \int_{\sigma}^{w} F_{1,n} \left[x + \frac{iz}{2^{1/2}} \right] d_{w} x = G_{F_{1}} \left[\frac{z}{2^{1/2}} \right]$$

for every $z \in K$ and similarly

(3.8)
$$\lim_{n\to\infty}\int_{\sigma}^{w}F_{2,n}\left[x-\frac{iz}{2^{1/2}}\right]d_{w}x=G_{F_{2}}\left[-\frac{z}{2^{1/2}}\right],$$

for every $z \in K$. From (3.3) and (3.5) with p = 3, the integrand of the left side of (3.4) is seen to be bounded by $A^2 \exp \{18B(|||x|||^{2-\varepsilon} +$ $|||y|||^{2-\varepsilon} + |||z|||^{2-\varepsilon})\}$. The repeated integral of the above expression with respect to y and then with respect to x over the entire Wiener space is finite for every $z \in K$. Thus by (3.1) with dominated convergence and by (1.5), (1.1),

$$(3.9) \quad \lim_{n \to \infty} \int_{\sigma}^{w} \left\{ \int_{\sigma}^{w} F_{1,n} \left[\frac{y + x + iz}{2^{1/2}} \right] F_{2,n} \left[\frac{y - z - iz}{2^{1/2}} \right] d_{w}y \right\} d_{w}x = G_{F_{1}*F_{2}}[z]$$

for every $z \in K$. By letting $n \to \infty$ on both sides of (3.4) and by (3.7), (3.8) and (3.9), the lemma is established.

Proof of Theorem II. Let $F_i[x] \in E_m$, i = 1, 2, and let $\varphi_1(t), \varphi_2(t), \cdots$ be a complete orthonormal set of real valued continuous functions on the interval $0 \leq t \leq 1$ which vanish when t = 0. Let

(3.10)
$$F_{i,n}[z] = F_i\left[\sum_{j=1}^n \varphi_j(\cdot) \int_0^1 x(t)\varphi_j(t)dt\right] \quad n = 1, 2, \dots, i = 1, 2,$$

and let

$$x^{(n)}=\sum_{j=1}^n arphi_j(\cdot)\int_0^1 x(t)arphi_j(t)dt$$
, $n=1, 2, \cdots$.

By 1° in the definition of E_m ,

(3.11)
$$\lim_{n \to \infty} F_{i,n}[x] = F_i[x]$$
,

for every $x \in K$, i = 1, 2, and $F_{i,n}[x]$, i = 1, 2, satisfy 1° of the lemma.

To show that 2° of the lemma is satisfied, let us define $\Phi_{i,n}([\zeta_j]_n)$ by

To show that each $\varphi_{i,n}$ is an entire function of exponential type of n complex variables, we set

$$egin{aligned} x(t) &= \zeta_1 arphi_1(t) + \, \cdots + \zeta_{j-1} arphi_{j-1}(t) + \zeta_{j+1} arphi_{j+1}(t) + \, \cdots + \, \zeta_n arphi_n(t) \;, \ y(t) &= arphi_j(t) \;. \end{aligned}$$

From (3.12) it follows that $\Phi_{i,n}([\zeta_j]_n) = F_i[x(t) + \zeta_i y(t)]$ and by 2° in the definition of E_m , $\Phi_{i,n}$ is an entire function of ζ_j . From the arbitrariness of the choice of ζ_j from $\{\zeta_j\}$ and by Hartogs' regularity theorem, $\Phi_{i,n}$ is an entire function of the *n* complex variables $\{\zeta_j\}$ for $n = 1, 2, \dots, i = 1, 2$. That $\Phi_{i,n}$ is of exponential type follows from (3.12) and 3° of the definition of E_m :

$$egin{aligned} &|arphi_{i,n}([\zeta_{\jmath}]_n)| &\leq A_{F_i} \exp\left\{B_{F_i}igg(\int_0^1 \left|\sum\limits_{\jmath=1}^n \zeta_{\jmath}arphi_{j}(t)
ight|^2 dtigg)^{1/2}
ight\}\ &\leq A_{F_i} \exp\left\{B_{F_i}igg(\sum\limits_{\jmath=1}^n |arphi_{\jmath}|^2igg)^{1/2}
ight\}\ &\leq A_{F_i} \exp\left\{B_{F_i}\sum\limits_{\jmath=1}|arphi_{\jmath}|
ight\}. \end{aligned}$$

This proves the asserted property of $\Phi_{i,n}$. On the other hand from (3.10), (3.12)

(3.13)
$$F_{i,n}[x] = \Phi_{i,n}\left(\left[\int_0^1 x(t)\varphi_j(t)dt\right]_n\right), \quad n = 1, 2, \cdots, i = 1, 2.$$

Now if we let $\alpha_j(t) = \int_t^1 \varphi_j(t) dt$, $n = 1, 2, \dots$, then by integration by parts $\int_0^1 x(t)\varphi_j(t) dt = \int_0^1 \alpha_j(t) dx(t)$, and (3.13) becomes

$$F_{i,n}[x] = \mathcal{P}_{i,n}\left(\left[\int_0^1 lpha_j(t)dx(t)
ight]_n
ight), \qquad n = 1, 2, \cdots, 1 = 1, 2$$

where by definition $\alpha_j(t)$ are of bounded variation on $0 \leq t \leq 1$. Therefore each $F_{i,n}[x]$ satisfies the conditions of Theorem I, [3] and hence its Fourier-Wiener transform exists. Moreover by Theorem I the convolution $(F_{i,n} * F_{2,n})[x]$ exists and satisfies (3.2) for every $z \in K$ for $n = 1, 2, \cdots$. Thus 2° of the lemma is satisfied.

Finally, let A be the greater of A_{F_1}, A_{F_2} and B be the greater of B_{F_1}, B_{F_2} in 3° of the definition of E_m . By (3.10), (3.14)

$$egin{aligned} &|F_{i,n}[x]| &\leq A \exp \left\{ B \Big(\int_0^1 \left| \sum\limits_{j=1}^n arphi_j(s) \int_0^1 x(t) arphi_j(t) dt \right|^2 ds \Big)^{1/2}
ight\} \ &\leq A \exp \left\{ B \Big(\int_0^1 |x(t)|^2 dt \Big)^{1/2}
ight\} \ &\leq A \exp \left\{ B \, |||x|||^{2-arepsilon}
ight\} \end{aligned}$$

for $1 > \varepsilon > 0$ and 3° of the lemma is satisfied.

By the conclusion of the lemma, Theorem II is proved.

BIBLIOGRAPHY

1. S. Bochner and W. T. Martin, Several complex variables, Princeton, 1948.

2. R. H. Cameron, Some examples of Fourier-Wiener transforms of analytic functionals, Duke Math. J. 12 (1945), 485-488.

3. R. H. Cameron and W. T. Martin, Fourier-Wiener transforms of analytic functionals, Duke Math. J. 12 (1945), 489-507.

4. P. Erdös and M. Kac, On certain limit theorems of the theory of probability, Bull. Amer. Math. Soc. 52 (1946), 292-302.

5. B. A. Fuks, Theory of analytic functions of several complex variables, Moscow, 1962, (in Russian).

6. F. Hartogs, Zur Theorie der analytischen Funktionen mehrerer unabhängiger Veränderlichen, Mathematische Annalen, 62 (1906), 1-88.

7. R. E. A. C. Paley and N. Wiener, Fourier transforms in the complex domain, Amer. Math. Soc. Colloq. Publ. Vol. XIX, 1934.

UNIVERSITY OF ROCHESTER ROCHESTER, NEW YORK AND NEW YORK UNIVERSITY COURANT INSTITUTE OF MATHEMATICAL SCIENCES

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. SAMELSON

Stanford University Stanford, California

R. M. BLUMENTHAL University of Washington Seattle, Washington 98105 J. Dugundji

University of Southern California Los Angeles, California 90007

RICHARD ARENS University of California Los Angeles, California 90024

ASSOCIATE EDITORS

E. F. BECKENBACH

B. H. NEUMANN F. WOLF

K. YOSIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA CALIFORNIA INSTITUTE OF TECHNOLOGY UNIVERSITY OF CALIFORNIA MONTANA STATE UNIVERSITY UNIVERSITY OF NEVADA NEW MEXICO STATE UNIVERSITY OREGON STATE UNIVERSITY UNIVERSITY OF OREGON OSAKA UNIVERSITY UNIVERSITY OF SOUTHERN CALIFORNIA STANFORD UNIVERSITY UNIVERSITY OF TOKYO UNIVERSITY OF UTAH WASHINGTON STATE UNIVERSITY UNIVERSITY OF WASHINGTON

AMERICAN MATHEMATICAL SOCIETY CALIFORNIA RESEARCH CORPORATION SPACE TECHNOLOGY LABORATORIES NAVAL ORDNANCE TEST STATION

Mathematical papers intended for publication in the *Pacific Journal of Mathematics* should by typewritten (double spaced). The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. It should not contain references to the bibliography. Manuscripts may be sent to any one of the four editors. All other communications to the editors should be addressed to the managing editor, Richard Arens, at the University of California, Los Angeles, California 90024.

50 reprints per author of each article are furnished free of charge; additional copies may be obtained at cost in multiples of 50.

The *Pacific Journal of Mathematics* is published quarterly, in March, June, September, and December. Effective with Volume 13 the price per volume (4 numbers) is \$18.00; single issues, \$5.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: \$8.00 per volume; single issues \$2.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley 8, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 6, 2-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Pacific Journal of Mathematics Vol. 15, No. 2 October, 1965

	373
A. A. Albert, On exceptional Jordan division algebras	377
J. A. Anderson and G. H. Fullerton, <i>On a class of Cauchy exponential series</i>	405
Allan Clark, Hopf algebras over Dedekind domains and torsion in	
	419
John Dauns and D. V. Widder, Convolution transforms whose inversion	
functions have complex roots	427
Ronald George Douglas, Contractive projections on an L ₁ space	443
	463
Ramesh Anand Gangolli, Sample functions of certain differential processes on	
symmetric spaces	477
Robert William Gilmer, Jr., Some containment relations between classes of ideals of a commutative ring	497
Basil Gordon, A generalization of the coset decomposition of a finite	
	503
Teruo Ikebe, On the phase-shift formula for the scattering operator	511
	525
	537
	541
Betty Kvarda, An inequality for the number of elements in a sum of two sets of	
	545
Jonah Mann and Donald J. Newman, <i>The generalized Gibbs phenomenon for regular Hausdorff means</i>	551
	557
	561
	585
Tom Stephen Pitcher, A more general property than domination for sets of	597
	613
Arthur Argyle Sagle, On simple extended Lie algebras over fields of	015
	621
	649
	667
	673
Raymond Earl Smithson, Some general properties of multi-valued	075
	681
	705
	719
	731