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Let C be the Wiener space and K be the space of com-
plex valued continuous functions on 0 <t <1 which vanish at
t = 0. The Fourier-Wiener transform of a functional F[z],
xe K, is by definition

6yl = | Pl + il yeK.
[
Let E;, be the class of functionals F'[x] of the type
1 1
Flel = 0| | wtdatt), -, {‘attdats) |
0 0

where @.((;, -++,(.) is an entire functicn of the n complex
variables {{;} of the exponential type and {«;} are n linearly
independent real functions of bounded variatien on 0 <¢ <1,
Let £, be the class of functionals which are mean continuous,
entire and of mean exponential type.

We define the convolution of two functionals F';, F; to be

(B, Fyla] = SUFI[""ijf]Fﬁ[yzj,f]dwy , wekK,

Then if F\,F,€FE, or Fy, F,eFE,, the convolution of F,,F,
exists for every x € K and furthermore

Gr,» Grfe) = Gr, [ £7 | 0o~

], ze K.

Let K be the space of complex-valued continuous functions
defined on 0 < ¢ <1 which vanish at ¢ = 0 and let C be the Wiener
space, namely the subspace of K which consists of real-valued elements
of K. Let F[x] = F[x(-)] be a functional which is defined throughout
K. If it exists, the functional

1.1) Gly] = ng[x +iylde, yekK
o
is called the Fourier-Wiener transform of F'[z].

The first class K, of functionals is defined as follows: A functional
F[x] belongs to E, if

(1.2) Flo] = @FU:al(t)dx(t), S:an(t)dx(t)]
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where @,((,, +++,{,) is an entire function of the % complex variables
{Z;} of exponential type

1.3) [@#(Cyy =+, Ca) | < Mertiénltticnl)

and «;(t) are n linearly independent real functions of bounded variation
on 0 =¢t=1. The function @, as well as the constants M and a depend
on F.

The second class E,, consists of functionals F'[x] which are mean
continuous, entire and of mean exponential type: that is, K, is the
class of functionals satisfying the following three conditions:

1° lim,.. F[x™] = F[z] holds for all x and ™ in K for which
lim, ... S |2™(t) — w(t) P dt = 0.

0

2° Flx + \y] is an entire function of the complex variable \ for
all z and y in K; and

3° there exist positive constants A, and B, depending on F such
that

(L.4) | Fle]| < Ay exp {BF<S | (t) |2dt)”2} for all xe K .

According to Theorems 1 and A, [3], if F'[x] belongs to E,or E,,
its transform G|y] exists for all y € K and belongs to the same class.

We now define the convolution of two functionals F\[x] and F,[x]
to be

L5)  (FFya] = SoFl[y;f]Fz[yz;x]dwy , zeK
if the integral in the right side exists.
The result of this paper is stated in the following two theorems:

THEOREM 1. If F\z], F)x]<c E,, the convolution (1.5) exists for
every we K. Morcover, the Fourier-Wiener transform Gp..l2] of
(1.5) exists and satisfies

1.6) Grarf2] = GF1[2—%] GFQ[— ;/z] for every ze K.

THEOREM II. Exactly the same as in Theorem I holds for any
two functionals belonging to E,,.

Theorem I and II will be proved in §2 and §3 respectively. From
these theorems follows the Parseval relation of [3].
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2. NOTATION. We introduce the notation @([{;],) for the func-
tion @, --+,¢,) of m complex variables, @([Z;]., [{}].) for the funec-
tion 9, +--,C,, &5 -+, L) of m + m complex variables. In particular,
?(|Z;l., £') stands for the function @((,, ---,(,, ") of n + 1 complex
variables.

We first make a few remarks on the entire functions of exponential

type.

REMARK 1. If @&, @.(&;],) are two entire functions of ex-
ponential type, the two factors in the right hand and consequently
the left hand of

(2.1) (&5, [E5),) = D275 + ED1DP(277(Es — CD])

are entire functions of exponential type of the » complex variables
o, &, for fixed &), ---, &, and, similarly, of the » complex variables
C{’ . ) C:L for ﬁXed C]! °t Y Qn'

ReMARK 2. If @(uy, ---,u,, {) is continuous in the % -+ 1 variables
for —oo <u; < o,7=1,2,---, % and { € R, a region in the complex
plane, and is analytic in e R for fixed u,, +--, u,, the uniform con-
vergence over R of the integral

Sm M Soc ¢(ul) ”’,umC)dul e dun
implies that the integral is an analytic function of { € R.

RemaARk 3. If @(¢]., [C5].) is an entire function of exponential
type of 2n complex variables, the integral

|7 o i exp (=gt — - — gjag, - g,
is an entire function of exponential type of the n complex variables
&, - G
Proof of Theorem I. For F|z], Fi[x]c E,,

(2.2) Fllz] = @,L([S:aj(t)dx(t)]) , i=1,2

where @,([(;1,), ©+ =1, 2, are two entire functions of exponential type
of n complex variables. We first prove the theorem for the special
case where {a;(¢)} are an orthonormal set on 0 <t < 1. We quote a
result by Paley and Wiener [7] which states that for any orthonormal

equality
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©.9) S:W([S:aj(t)dx(t)])dwx = ﬂi/z S:c . Sjww([uj]”)

X exp{—ui — +++ —uildu, ++- du,

holds for every function ¥(Ju;],) for which the integral on the right
side exists as an absolutely convergent Lebesgue integral. By (1.5),
(2.2), (2.1), (2.3),

FexFylel = o[ [ woave |, [t | )i

’
"

@.4) _ 1 S:o Sl@([uj]n, [S:aj(t)dx(t)]n)

n-n/z
X exp{—ul — +++ —ulldu, «-- du,

for every x € K, where the last integral exists becuase @([¢;],, [{5].) is

an entire function of exponential type in {{;} for fixed {{}} according

to Remark 1. This proves the existence of (F,x F,)[z] for every x ¢ K.
Now according to Remark 3,

[ o, iy exp(—ct = - —gaz, -+ g,

is an entire function of exponential type of {{}}, and hence, Theorem
1, [3] applies to the last member of (2.4). Thus the Fourier-Wiener
transform of (Fy*Fy)[x] namely G. . [2], exists for every z€ K and is
given by (1.1) as

(2.5)
Groedd = "L o 17 o, [ [ads + ¢ [tz | )
X exp{—uj — ¢+ —ulldu, -+ dun}dwx .
Now since

o o, 1+ gl e - — - — ujac, - dz,

is an entire function of exponential type of {{}} for fixed {{}}, (2.3) is
applicable to the last integral of (2.5). Thus

Georft = Z\" - |7 (il [os + i [ waz) ] )

" —oo

X exp{—ui —vi — v —ul — vidu, «-- du,dv, --- dv,

= zl Sl S:(I?1<[2“1/2<u,~ o+ g:aj(t)dz(t)ﬂ”)

> @2([2—“2(u,~ — vy —1 S:af(t)dz(t)ﬂ)

X exp{—ui = v} — «++ — U — vi}du, <+ - du,dv, -+ - dv, .
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Let

uy = 27w, + vy,
’1);‘-':2—1/2(1,(/5—-’111-), j:192;“'y'n'

and apply (2.3) to the result of this transformation. By (2.2), (1.1)
we have

Grpor 2] = {So(Dl [S a;(t)da(t) + S a,(t)dz(t)] > }

% {g @ (bda(t) = o S aj(t)dz(t)J )i }
=G| g 6]~ 9] -

This proves Theorem I for the special case.
In the general ease where «;(t) are n linearly independent real
valued functions of bounded variation on 0 < ¢t < 1, according to the

argument on p. 493, [3], we can write F[z], 2 = 1, 2 defined by (2.2)
as

w

Fila) = ot(] [ e ), i=1,2
0 n
where @¥([{;],) are entire functions of exponential type of {{;} and (%)

are n orthonormal functions of bounded variation on 0 < ¢t < 1. Now
the result for the special case applies and the theorem is proved.

3. LEMMA. Let {F,|z]}, F|z], {F,.[*]}, F.[x] be such that
1° 3.1) lim,.. F,; [z] = Fi[z] for every xc K, +=1,2.
2° the Fourier-Wiener transform ewxists for every F,[x] n =

1,2, ---,9=1,2; the convolution (F,,xF,,)[x] exists, its Fourier-
Wiener transform also exists and satisfies

(3.2) GFl,n*Fz,n[z] - GF”"[{;/;]GF%n[—_;W.] ’

Jor every ze K, for n=1,2, ---; and

3% (8.3) |Fi.l2]ll = Aexp{B|||z |7}, n=12--,1=1,2
where A, B, >0,2>¢>0and |||z]|| = maxy<;<, | 2(¢)|. Then the Fourier-
Wiener transforms of Fix], F)x], the convolution of Fi[x], F.[x] and
the Fourier-Wiener transform of the convolution exist and (1.6) holds.
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Proof of the lemma. By (1.5), (1.1), the equality (3.2) can be
written as

R e e L e
0 o Ln 21/2 20 _'—_217——' wY w

ALz + 2 |ael{|[Ffo- iz |as}, n=1,2,-.

We prove the lemma by justifying the passing to the limit under the
integral signs on both sides of (3.4). To do this, we observe that for
any p complex numbers ¢, ---, {,,

(3.4)

» _
> &

k=1

(3.5)

= (pmax (e, - 1G1) =005 160

An estimate of the first integrand on the right hand side of (3.4) is
given by (3.3) and (3.5) with p = 2:

@8 |[Fufe+ 2] = Aexo @BlIw Il + 1211}

21
Since ‘ exp {4B ||| z||**}d,x is finite according to [4], the right side

of (3. 6) is integrable with respect to « over the entire Wiener space
for fixed z. By (3.1) with dominated convergence and by (1.1)

3.7) lim SUF[x v é’j—z]dwx - GF[—;/—]

for every z¢ K and similarly

(3.8) }}E SOFM[:U 21/z]d x = GF2[-%] )

for every zc€ K. From (3.3) and (3.5) with p = 3, the integrand of
the left side of (3.4) is seen to be bounded by A*exp {18B(|||«||[** +
My llFe + llzllF%)}. The repeated integral of the above expression
with respect to y and then with respect to 2 over the entire Wiener
space is finite for every z€ K. Thus by (3.1) with dominated conver-
gence and by (1.5), (1.1),

59 i Sw {gw Fl[?_/f_”ujiﬂ] R[y_-—_z}_;ﬁ] dwy}dwx = G,.p ]
e Jo Lo 2 24

for every z¢ K. By letting »-— o on both sides of (3.4) and by (3.7),
(3.8) and (3.9), the lemma is established.

Proof of Theorem II. Let Flx]le E,,1=1,2, and let ¢,(t), p,(t),- -
be a complete orthonormal set of real valued continuous functions on the
interval 0 < ¢ =<1 which vanish when ¢t =0, Let
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(100 Full = B Se0) [s0p0a] n=12-- =12,
and let
o = 3y,() | a0t , n=1,2,-

By 1° in the definition of K,

for every xe K,©t =1, 2, and F, [x],7 =1, 2, satisfy 1° of the lemma.
To show that 2° of the lemma is satisfied, let us define @;,,([¢;1.)
by

(3.12) 0(G1) = F[S0e0)],  a=12.i=12.

To show that each @,, is an entire function of exponential type of %
complex variables, we set

2(t) = () + + o0+ Lapia®) A+ @it + o0 4+ (D),
y(t) = pi(t) .

From (3.12) it follows that @,,([¢,],) = File(t) + Cy®)] and by 2° in
the definition of K, @,, is an entire function of ;. From the arbi-
trariness of the choice of {; from {{,} and by Hartogs’ regularity
theorem, @;, is an entire function of the n complex variables {{;} for
n=1,2,--+,9=1,2. That @,, is of exponential type follows from
(38.12) and 3° of the definition of E:

| 04,,(151) | = Ap, exp {Bd

py i) "a)"}

)

= A, exp {Bpt Z{ |Cs |} .

= Ay, exp {BF1<

M

This proves the asserted property of &;,. On the other hand from
(3.10), (3.12)

(3.13) F. o] = (Di,nqgiw(t)g)j(t)dt]%)  om=1,2 i =1,2.

Now if we let a;t) = Sltpj(t)dt, n=1,2, -+, then by integration by
1 t

parts Slx(t)cpj(t)dt = Soaj(t)dx(t), and (3.13) becomes

F o] = @i,n([gzaj(t)dx(t)]”) L m=1,2,1=1,2
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where by definition «;(t) are of bounded variation on 0 =t =< 1. There-
fore each F ,[x] satisfies the conditions of Theorem I, [3] and hence
its Fourier-Wiener transform exists. Moreover by Theorem I the con-
volution (F;,*F,, ) [x] exists and satisfies (3.2) for every ze€ K for
n=1,2,---. Thus 2° of the lemma is satisfied.

Finally, let A be the greater of 4,, A;, and B be the greater of
By, By, in 3° of the definition of &,. By (3.10), (3.14)

Pzl = Aexo {B([ | 5 00 [ s0mi0ae ds) ")

< Aexp {B(S: | w(t) dt)l/z}
< Aexp{B||2]|l[**}

for 1 > ¢ > 0 and 3° of the lemma is satisfied.
By the conclusion of the lemma, Theorem II is proved.
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