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Put

S(e) = Ell e(x +y + cx'y’),

z,y=

Where e(x) = ¢**¥/? and zx’ = yy' =1 (mod p), Mordell has
conjectured that S(c) = O(p). The writer shows first, by an
elementary argument that S(c) = O(p*?). Next he proves,
using a theorem of Lang and Weil that S(¢) = O(p'¥/?). Finally
he proves that S(c) = O(p**); the proof makes use of the
estimate

= 9 @) = 0,

where ¢(a) is the Legendre symbol and f(x) is a polynomial
of the fourth degree,

If we put
K(a, b) = pie((m + bx'y ,

where ab = 0 (mod p), it is known that
(2) | K(a, b)| = 2p'* .
For proof of (2) see [1], [4].

Since

s=%

e(ax) pZile(by + ca'y’)

@
_ e

Z:, e(ax)K(b, cx'y ,

S

it follows that
181 = 51 Kb, )] = 260 — 1

by (2). Thus, assuming (2), we get
(3) S = 0(p™) .

However it is not difficult to prove (3) directly without making
use of (2). Put
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758 L. CARLITZ

(4) S©) = S e@ + y + ey .

z,y=1

There is evidently no loss in generality in taking ¢ = b = 1,

we have

»p—1 »—1 p—1 p=1
Sisor=5 5 5 e+ v—uot oy vy
=p > e@+ty—u—v).
zy=wuv(mod p)

But

—1

e(x +y —u—o) = p}_‘, e(x + y — u — xyu)

zy=wuv(mod p) z,y,u=1

=S oy — u) 5 elo(l — yu)

== S ew—n+ S e -0 efall — yw)

p—1

=—-l4pXl=p'—-p-1,

so that

p—1

(5) 2|8@ =0 —p'—p.
It follows at once from (5) that

(6) |S(e) | < p**,

so that we have proved (3).
2. Generalizing (4) we define

(7) S,0)= S e(@ 4 e+ @, 4ol ).

We shall show that
(8) S.(c) = O(p*™+v) |

Exactly as above we have

Then

(9) zcllsfn(c)lzsz zz y ;y 6(x1+ cee T, — Y — o0 —yn);

where the summation is over all x;, y; such that

Ty oos By = YWYy *** Yo s 2; %20, y; %0 (mod p) .
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Let T, denote the sum on the right of (9). Then we have

Tn:Ze(x1+ e B, — Y — 0o -—yn—-l_xl...xny;"" y'n—l)

20 e@ e T — Yt — Yu)

Ty iy g
Y H¥p—1

DY [ R AT Y TACRR VA I I8
The inner sum is equal to

p—1 @ oo e @y = Yy o Ypn)
—1 (@ T E Y Yus)

so that
To=pTwn— 5 @t e+ 8y —th— o = Yo
1/1,:;2:%
Hence
(10) T,=»T,,—1.
Now

h=2%e@—y=p-1, L=pp-1)-1=p-p-1
and generally
(11) T,=p"—p" — «ee — 1.
Thus (9) becomes

(12) SIS QF=p—pt = = p

and (8) follows at once.
It follows from (12) that

S.(c) = o(p"?)

cannot hold for all c.

3. Returning to (4) we shall now show that
(13) S(c) = O(p™") .
It is convenient to put

S(a, b, ¢) = X e(ax + by + c2'y’) .
z,Y
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Then
(14) SE S Is@b, 01 =N,

where N denotes the number of solutions of the system

T+ X, =2+ @,
Y+ Y=Y+ Y,
6y + TYs = TYs + BY,
X,%,0:0,Y:,Y.YsY, = 0.

Eliminating «,, ¥, it follows that N is the number of solutions of

(15) (@ Y; + TY)TYs(@, + Ty — TH)Yy + Yy — Ys)

= x1y1x2y2[(a’1 + @ — T (Y + Yy — Ys) + xsyal
such that
(16) x1x2w3y1y2y3(xl + Xy — w3)(y1 + Y— Y 3) E= 0.

Now by a theorem of Lang and Weil [2] we have
N=p*+ 0",
so that (14) becomes
an S S8 Is@b,01 = + 0w .
On the other hand

S5 5 18@b,00 =150,0,0+ 35 5550

p=1lp—1

+3518,0,01 + 5 5 5150, b, 0) I

=@ -1+ @ -1+ 30— D+ (- SISO,
so that (17) reduces to
18) S18@ 1= 00" .
Clearly (18) implies (13).

4, If an exact formula for

Sis@
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were available we should presumably be able to prove
(19) S(e) = O(@™) .

In this connection it may be of interest to remark that the sum

p—l1

(20) > 5%(c)

c=0

can be evaluated. Indeed if we put

Sla, b, ¢) = > e(ax + by + cx’ ¥') ,
.,y .
then

p=1p—1 p—1

2, (8(a, b, 0))" = p°N,

a=0 b=0 ¢=0

(21)
where N denotes the number of solutions of the system

2+, +x,=0
(22) Y+ Y+ Y=0
Y + Ty, + 2y = 0

LT, T5Y Yol F O .

Eliminating «,, %,, we find that (22) reduces to
(23) (@, 4 2yl 4 (@) + 3w, + 2Dy, + v+ w)yi = 0
together with
(29) T, Yo @ + )Y+ ¥s) £ 0
We may replace (23) by
(25) [(z, + %)y, + 2y.ll2y, + (2, + 2)y.] = 0.

If za(x, + x)y, = 0, it is clear from (25) that 4, == 0 and y, — y, = 0.
The two factors in (25) may vanish simultaneously. This will happen
when

(26) x+ X, +2s=0),

that is when — 3 is a quadratic residue of p; moreover if x,, x, satisfy
(26) with 2,2, == 0 then «, + 2, # 0. Thus the number of solutions of

(26) is equal to
—3\lp—1
{t+ (7,)}2 -
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If — 3 is a nonresidue we find that
(27) N=2>p -1 -2,
while, if — 3 is a residue,
(28) N=20p—1(p-2-@®-1.
For p =3 we have
(29) N=4,

for it is evident from (22) that «, =2, =2, ¥, = ¥, = ¥s.
Combining (27) and (28) we have

60  N=20-Vo-2-{1+ ()25 0>,

On the other hand, since

S0,0,0) =(» — 1)*S(a,0,0)=—-(»—-1) (¢%0),
S(a, b, 0) = 1 (ab = 0) ,

we have

=3
-

—1 p—1 p—

(S, b,0))y =(p—1° =3 — 1)+ 3@p— 1)

+ 555 @b 0
= — 130 — 1 + 30 — I + & — 15, (S .
Therefore, using (21) and (30), we get
(31) SS@F =200 — 2 — (@ — 1

+3(p—1)2-—3~%{1+(:p§>}.

5. We shall now show that
(32) S(c) = 0™ .
With the notation of § 3 we have, as above,
(33) S5 SIS@b ol =N,

where N is the number of solutions of the system
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Y + Y)Y:Ys = Y Ya(Ys + Y)
T Y+ XY, = Tyl + Y,
L2050 Y1 YoYsYs E O o

(xl + x2)x3x4 = x1x2(x3 + w4)
(39 j

Note that we have replaced each x;, y; by its reciprocal (mod p).
If we put

Ly = XUy , Xy = LUy Ys = Y0y Ys = Ys02
(34) becomes
(@, + @)U U, = U, + @, U,
(35) Y, + YDV = Y0, + Yy,

TY, + TYo = T YUV, + BY U0,
B Y YU U V10 F O

Now put z, = x2, ¥, = y.y and (35) reduces to

A + 2)uu, = u, + U,
(36) 1 4+ Y, = v, + Yv,
1+ a2y = uw, + 2yu,w,
XYL Y, UV U0y FE O L

Finally, eliminating x, y we get the single equation

(87) 1 — u)d — v}l(l — ul'vy)v + 1 - uz)(lf@)(l — Uy0,) =0
U, Uy,

subject to
(38) XY UV UV, FE O L

It should be noted that for fixed w,, v,, u,, v, satisfying (37), z, y are

uniquely determined by (36) unless u, = u, = v, = v, = 1; also we find

that the forbidden cases zy = 0 or zy “infinite” contribute O(p?).
Let N’(k) denote the number of solutions u, v % 0 of

(39) 1 — u)1 — )1 — uv) = kuv
and let N(k) denote the total number of solutions of (39), so that
N(k) = N'(k) + 0Q1) .

Then clearly the number of nonzero solutions of (37) is equal to

(40 S N@N(— B + ) -



764 L. CARLITZ

Let v (a) denote the Legendre symbol (a/p). Then for fixed » and
k, the number of solutions of (39) is equal to

1+ P{(L + kw — w) — du(l — uy},

so that
N = p + SS9 (flk, w) ,
where
(41) Sk, w) = 1 + ku — u*)? — du(l — w)*.

Thus (40) becomes

'ﬁ
,_.

—1p—

(42) P+ pk ¥ )

I
o

S S (e, (A~ K, 0) + O .

um‘?

Since f(k, w) is a quadratic in & we have
Sk, w) = —
unless (1 — u) = 0. It follows that
(43) 5 S v (£, ) = 0@ .
Consider next the sum
S, w)

It is easily seen from (41) that for fixed %k, f(k, ) is the square of a
polynomial in % only when k¥ = 0. We therefore have the estimate

() (S, w) = Ow™),
so that
(45) 50 S S (f W (A= T w) = O -

Substituting from (43) and (45) in (42) we see that the number of
nonzero solutions (37) is

p* + O(p®) .

Therefore N, the number of solutions of (34) is
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p° + O(p*)

and (33) becomes

_

a;o bgo c:_o lS(a’ b’ C) }4 = pB -+ O(p7) H

since S(0, 0, 0) = p*,
S(a, b, ¢) = S(1, 1, abe) (abe # 0)

=

and there are (p — 1)* terms S(a, b, ¢) in the sum that give the same
S@1, 1, ¢), (32) now follows immediately.
Note that, except for (44), the proof is elementary.
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