Pacific Journal of Mathematics

NOTE GENERALIZING A RESULT OF SAMUEL'S

LUTHER ELIC CLABORN

Vol. 15, No. 3 November 1965

NOTE GENERALIZING A RESULT OF SAMUEL'S

LUTHER CLABORN

Let C(A) denote the class group of a Krull domain A. Samuel has established (a) $C(A) \rightarrow C(A[[X_1, \cdots, X_n]])$ is injective, and (b) $C(A) \rightarrow C(A[[X_1, \cdots, X_n]])$ is bijective in Case A is a regular U.F.D. This note establishes that $C(A) \rightarrow C(A[[X_1, \cdots, X_n]])$ is bijective in Case A is a regular noetherian domain, thus adding a complement to (a) while generalizing (b). A corollary of this is that $A[[X_1, \cdots, X_n]]_S$ is a U.F.D. if A is a regular Noetherian domain and S is the set of nonzero elements of A.

In [1], Samuel gave an example of a nonregular noetherian U.F.D. A such that A[[X]] is not a U.F.D. In this case certainly, the mapping of the class group C(A) into C(A[[X]]) is not onto (since a unique factorization domain is characterized by C(A) = 0). In the same article, Samuel showed that A[[X]] is a U.F.D. in Case A is a regular U.F.D. Here it is proved that $C(A) \rightarrow C(A[[X_1, \dots, X_n]])$ is one-to-one onto in Case A is a regular noetherian domain. The main tool is the technical Theorem 3 below, which shows that if W is unmixed of height 1 in $A[[X_1, \dots, X_n]]$, then there is an unmixed height 1 ideal I of A such that IW is principal. From this the result stated above follows directly.

Two lemmas are needed to facilitate the main results.

LEMMA 1. Let B be a regular noetherian domain and let I and W be two unmixed height 1 ideals of B such that I and W have no associated prime ideals in common. Then $IW = I \cap W$.

Proof. For each M, B_M is a regular local Noetherian ring, hence a U.F.D., so IB_M and WB_M are both principal ideals. Since I and W have no associated prime ideals in common, neither do IB_M and WB_M . It follows that $IB_M \cap WB_M = IB_M \cdot WB_M$. Thus for each M, $(I \cap W)B_M = IB_M \cap WB_M = IB_M \cdot WB_M = (IW)B_M$. This establishes the lemma.

LEMMA 2. Let B be a regular noetherian domain and Z be an unmixed height 1 ideal of B. If X is an element of B such that (a) X is in the Jacobson radical of B and (b) Z: XB = Z, then Z + XB is unmixed of height 2.

Proof. Let P be an associated prime ideal of Z + XB. Then B_P is a regular local ring, hence is a U.F.D. [3, Thm., p. 406]. ZB_P is

Received July 17, 1964.

principal, so choose T in Z such that $ZB_P = TB_P$. Then PB_P is an associated prime ideal of $(Z + XB)B_P = ZB_P + XB_P = TB_P + XB_P$. But Z: XB = Z implies that $ZB_P: XB_P = ZB_P$, or $TB_P: XB_P = TB_P$, so $\{T, X\}$ is a prime sequence in B_P . This implies that height of $PB_P = 2$ [3, Thm. 2, p. 397]. But height of P height of PB_P .

THEOREM 3. Let A be a regular noetherian domain and let $B_n = A[[X_1, \cdots, X_n]]$. If W is any unmixed height 1 ideal of B_n , then there is an unmixed height 1 ideal I of A such that IW is principal and $IW = IB_n \cap W$.

Proof. Let $B_0 = A$. The theorem will be proved for $n \ge 0$ by induction on n.

(1) n=0. W is an unmixed height 1 ideal of A. Since A is regular, it is integrally closed, so $W=P_1^{(n_1)}\cap\cdots\cap P_k^{(n_k)}$ where the P_i $i=1,\cdots,k$ are height 1 prime ideals and $P_j^{(n_i)}$ $i=1,\cdots,k$ is the n_i th symbolic power of P_i . Choose d an element of A so that $V_{P_i}(d)=n_i$ $i=1,\cdots,k$ where V_{P_i} denotes the discrete valuation determined by P_i . Then dA can be written

$$dA = P_1^{\scriptscriptstyle(n_1)} \cap \cdots \cap P_k^{\scriptscriptstyle(n_k)} \cap P_{k+1}^{\scriptscriptstyle(n_{k+1})} \cap \cdots \cap P_l^{\scriptscriptstyle(n_l)}$$

where the P_{k+j} $j=1,\cdots,l-k$ are further height 1 prime ideals of A. Let $I=P_{k+1}^{(n_{k+1})}\cap\cdots\cap P_{l}^{(n_{l})}$. Then visibly $I\cap W=dA$ is principal. By Lemma 1, $I\cap W=IW$.

(2) Suppose the theorem has been established for $n-1 (n \ge 1)$. Let W be an unmixed height 1 ideal of B_n and write $W=ZX_n^k$ where $Z: X_n B_n = Z$. If $Z=B_n$, the theorem follows trivially. If $Z \ne B_n$, then Z is also unmixed of height 1. Thus $Z+X_n B_n$ is unmixed of height 2 by Lemma 2. Let $Z_0=Z+X_n B_n/X_n B_n$. Z_0 is unmixed of height 1 in B_{n-1} . By induction, there is an ideal I of A such that $IZ_0=IB_{n-1}\cap Z_0$ is principal, say $IZ_0=u_0(X_1,\cdots,X_{n-1})\cdot B_{n-1}$. Choose an element $u(X_1,\cdots,X_{n-1},X_n)$ in IZ whose leading coefficient when written as a power series in X_n is $u_0(X_1,\cdots,X_{n-1})$.

Let $f(X_1, \dots, X_n)$ be any element of $IB_n \cap Z$. Then $f(X_1, \dots, X_{n-1}, 0)$ is in $IB_{n-1} \cap Z_0$. This implies that $f - g_0 u = X_n \cdot f_1$, where f_1 is in B_n and g_0 is in B_{n-1} . Since f and u are both in Z, f_1 is in Z: $X_nB_n = Z$. Clearly f_1 is in IB_n . So repeating, we can find an f_2 in B_n and a g_1 in B_{n-1} such that $f_1 - g_1 u = X_n \cdot f_2$. Continuing, we get that

$$f = u \cdot \sum_{i=0}^{\infty} g_i X_n^i$$

showing simultaneously that $IB_n \cap Z$ is principal and that $IB_n \cap Z = IZ$. To conclude, $IW = IZX_n^kB_n = u \cdot X_n^kB_n$ is principal. If v is in $IB_n \cap W$, from v in W it follows that $v = X_n^k \cdot v'$, where v' is in Z. But then v' is in IB_n so v' is in $IB_n \cap Z = IZ$. This gives that $v = X_n^k v'$ is in $IZX_n^k = IW$, showing that $IB_n \cap W \subseteq IW$. The opposite inclusion is trivial, so the induction is complete.

COROLLARY 4. The map $C(A) \rightarrow C(A[[X_1, \dots, X_n]])$ of the class group of A into the class group of $A[[X_1, \dots, X_n]]$ is one-to-one onto if A is a regular noetherian domain.

Proof. Samuel [2, Prop. 1, p. 156 and Prop. 3, p. 138] has shown that the map is one-to-one. Theorem 3 proves that it is onto in the present case.

COROLLARY 5. Let A be a regular noetherian domain. Let M be a multiplicative set of $A[[X_1, \dots, X_n]]$. Then $C(A[[X_1, \dots, X_n]]_M)$ is a homomorphic image of C(A).

Proof. Samuel [2, Prop. 2, p. 157] shows that $C(R) \rightarrow C(R_s)$ is always onto. Corollary 4 supplies the rest.

COROLLARY 6. Let A be a regular noetherian domain. Let S denote the nonzero elements of A. Then $B' = A[[X_1, \dots, X_n]]_S$ is a U.F.D.

Proof. Let W be an unmixed height 1 ideal of $A[[X_1, \dots, X_n]]$. Then there is an unmixed height 1 ideal I of A such that IW is principal, say IW = (U). Then $UB' = IB' \cdot WB'$, but IB' = B', so WB' = UB' is principal.

REMARKS. (1) Samuel [2] has established the analogue of Corolary 4 for $A[X_1, \dots, X_n]$. This implies that Corollaries 5 and 6 also hold for $A[X_1, \dots, X_n]$, Corollary 6 of course being trivial.

(2) As originally submitted, this note established Theorem 3 and its corollaries only in the case that A is a Dedekind domain. In the original presentation, Corollary 6 was the main tool for the proofs of Corollaries 4 and 5. I wish to express my gratitude to the referee for bringing Samuel's results [2] to my attention and for suggesting the generalization to regular Noetherian domains. Lemma 1 is the only addition necessary to effect the generalization.

REFERENCES

- 1. P. Samuel, On unique factorization domains, Illinois J. 5 (1961), 1-17.
- 2. ———, Sur les anneaux factoriels, Bull. Soc. Math. France, **89** (1961), 155-173.
- 3. O. Zariski and P. Samuel, Commutative Algebra, Vol. II, Princeton, D. Van Nostrand Company (1960).

CORNELL COLLEGE

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. SAMELSON

Stanford University Stanford, California

R. M. BLUMENTHAL

University of Washington Seattle, Washington 98105 I. Dugundji

University of Southern California Los Angeles, California 90007

*RICHARD ARENS

University of California Los Angeles, California 90024

ASSOCIATE EDITORS

E. F. BECKENBACH

B. H. NEUMANN

F. Wolf

K. Yosida

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON
OSAKA UNIVERSITY
UNIVERSITY OF SOUTHERN CALIFORNIA

STANFORD UNIVERSITY
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON

AMERICAN MATHEMATICAL SOCIETY CALIFORNIA RESEARCH CORPORATION SPACE TECHNOLOGY LABORATORIES NAVAL ORDNANCE TEST STATION

Mathematical papers intended for publication in the *Pacific Journal of Mathematics* should by typewritten (double spaced). The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. It should not contain references to the bibliography. No separate author's resumé is required. Manuscripts may be sent to any one of the four editors. All other communications to the editors should be addressed to the managing editor, Richard Arens, at the University of California, Los Angeles, California 90024.

50 reprints per author of each article are furnished free of charge; additional copies may be obtained at cost in multiples of 50.

The *Pacific Journal of Mathematics* is published quarterly, in March, June, September, and December. Effective with Volume 13 the price per volume (4 numbers) is \$18.00; single issues, \$5.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: \$8.00 per volume; single issues \$2.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley 8, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 6, 2-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

* Basil Gordon, Acting Managing Editor until February 1, 1966.

Pacific Journal of Mathematics

Vol. 15, No. 3 November, 1965

bounded linear operators	739
Robert McCallum Blumenthal, Joram Lindenstrauss and Robert Ralph Phelps,	747
Extreme operators into $C(K)$	757
• •	767
Joseph A. Cima, A nonnormal Blaschke-quotient	
Paul Civin and Bertram Yood, <i>Lie and Jordan structures in Banach algebras</i>	775
Luther Elic Claborn, Dedekind domains: Overrings and semi-prime elements	799
	805
Luther Elic Claborn, <i>Note generalizing a result of Samuel's</i>	803
dual nonlinear programs	809
Philip J. Davis, Simple quadratures in the complex plane	813
Edward Richard Fadell, On a coincidence theorem of F. B. Fuller	825
Delbert Ray Fulkerson and Oliver Gross, <i>Incidence matrices and interval</i>	023
graphs	835
Larry Charles Grove, Tensor products over H*-algebras	857
Deborah Tepper Haimo, L^2 expansions in terms of generalized heat polynomials	
and of their Appell transforms	865
I. Martin (Irving) Isaacs and Donald Steven Passman, A characterization of	
groups in terms of the degrees of their characters	877
Donald Gordon James, Integral invariants for vectors over local fields	905
Fred Krakowski, A remark on the lemma of Gauss	917
Marvin David Marcus and H. Minc, A subdeterminant inequality	921
Kevin Mor McCrimmon, Norms and noncommutative Jordan algebras	925
Donald Earl Myers, Topologies for Laplace transform spaces	957
Olav Njstad, On some classes of nearly open sets	961
Milton Philip Olson, A characterization of conditional probability	971
Barbara Osofsky, A counter-example to a lemma of Skornjakov	985
Sidney Charles Port, Ratio limit theorems for Markov chains	989
George A. Reid, A generalisation of W*-algebras	1019
Robert Wells Ritchie, Classes of recursive functions based on Ackermann's	
function	1027
Thomas Lawrence Sherman, Properties of solutions of nth order linear	
differential equations	1045
Ernst Snapper, Inflation and deflation for all dimensions	1061
Kondagunta Sundaresan, On the strict and uniform convexity of certain Banach	100-
spaces	
Frank J. Wagner, Maximal convex filters in a locally convex space	1087
Joseph Albert Wolf, Translation-invariant function algebras on compact	1000
groups	1093