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Let C(A) denote the class group of a Krull domain A.
Samuel has established (a) C(A) -> C(A[[XU , Xn]]) is in-
jective, and (b) C(A) -> C(A[[XU , Xn]]) is bijective in Case
A is a regular U.F.D. This note establishes that C(A) ->
C(A[[Xi, , Xn]]) is bijective in Case A is a regular noetherian
domain, thus adding a complement to (a) while generalizing
(b). A corollary of this is that A[[XU -, Xn]]s is a U.F.D.
if A is a regular Noetherian domain and S is the set of
nonzero elements of A.

In [1], Samuel gave an example of a nonregular noetherian U.F.D.
A such that -A[[X]] is not a U.F.D. In this case certainly, the mapping
of the class group C(A) into C(A[[X]]) is not onto (since a unique
factorization domain is characterized by C(A) = 0). In the same article,
Samuel showed that A[[X]] is a U.F.D. in Case A is a regular U.F.D.
Here it is proved that C(A) —> C(A[[Xlf •• ,XW|]) is one-to-one onto in
Case A is a regular noetherian domain. The main tool is the technical
Theorem 3 below, which shows that if W is unmixed of height 1 in
A[[XX, •••, XJ], then there is an unmixed height 1 ideal / of A such
that IW is principal. From this the result stated above follows directly.

Two lemmas are needed to facilitate the main results.

LEMMA 1. Let B be a regular noetherian domain and let I and
W be two unmixed height 1 ideals of B such that I and W have no
associated prime ideals in common. Then IW ~ I Π W.

Proof. For each M9 BM is a regular local Noetherian ring, hence
a U.F.D., so IBM and WBM are both principal ideals. Since / and W
have no associated prime ideals in common, neither do IBM and WBM.
It follows that IBM Π WBM = IBM WBM. Thus for each M, (I Π W)BM =
IBM (Ί WBM = IBM WBM = (IW)BM. This establishes the lemma.

LEMMA 2. Let B be a regular noetherian domain and Z be an
unmixed height 1 ideal of B. If X is an element of B such that (a)
X is in the Jacobson radical of B and (b) Z: XB = Z, then Z + XB
is unmixed of height 2.

Proof. Let P be an associated prime ideal of Z + XB. Then BP

is a regular local ring, hence is a U.F.D. [3, Thm., p. 406]. ZBP is
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principal, so choose T in Z such that ZBP — TBP. Then PBP is an
associated prime ideal of {Z + XB)BP = ZBP + XBP = TBP + XBP.
But £ : XB = Z implies that Z £ P : XE P = ZB P , or TBP: XBP = TBP,
so {Γ, X) is a prime sequence in BP. This implies that height of
PBP = 2 [3, Thm. 2, p. 397]. But height of P = height of PBP.

THEOREM 3. Let A be a regular noetherian domain and let Bn —
A[[X19 « , X J ] . // W is any unmixed height 1 ideal of Bn, then
there is an unmixed height 1 ideal I of A such that IW is principal
and IW = IBn n W.

Proof. Let J50 = A. The theorem will be proved for n ^ 0 by
induction on n.

(1) % = 0. W is an unmixed height 1 ideal of A. Since A is
regular, it is integrally closed, so W — Pini) Π Π PiWfc) where the
p. i = 1, . . , k are height 1 prime ideals and PJni) i = 1, , k is the
n{th symbolic power of P{. Choose d an element of A so that VP.(d) —
n{ i — 1, , k where VPi denotes the discrete valuation determined
by Pi. Then dA can be written

dA = p ^ n n Pίnk) n Pi:ΐ+1) n n Pίnι)

where the Pk+j j — 1, , I — k are further height 1 prime ideals of
A. Let I — Pi+i+1) Π Π Pln°. Then visibly If] W — dA is principal.
By Lemma 1, / n W = /TF.

(2) Suppose the theorem has been established for w — l(n ^ 1).
Let W be an unmixed height 1 ideal of Bn and write W = ZX£ where
Z: XnBn = Z. If Z = J5%, the theorem follows trivially. If Z ^ βw,
then Z is also unmixed of height 1. Thus Z + XnBn is unmixed of
height 2 by Lemma 2. Let Zo = Z + XnBJXnBn. Zo is unmixed of
height 1 in Bn_u By induction, there is an ideal / of A such that
IZQ — IBn_x Π Zo is principal, say IZ0 — uo(Xl9 , Xn^) Bn_19 Choose

an element u(Xu •• , I n _ 1 ) I f t ) in 7Z whose leading coefficient when
written as a power series in Xn is uo(Xly •••, Xw_i).

Let /(XL, , Xn) be any element of IBn Π ^ . Then /(X l 7 , Xw__x, 0)
is in IBn_ί Π Zo. This implies that / — gou — Xn fl9 where f is in
Bn and gr0 is in Bn_γ. Since / and u are both in Z, f is in Z: XnBn = Z.
Clearly f is in IBn. So repeating, we can find an f2 in Bn and a grL

in J5%_! such that /x — g±u = X% /2. Continuing, we get that
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showing simultaneously that IBn Π Z is principal and that IBn Π Z — IZ.
To conclude, IW = IZX*Bn = u X£Bn is principal. If v is in

IBn Π TΓ, from v in TF it follows that v — X% fl', where v' is in Z.
But then ι/ is in IBn so v' is in IBn Π Z = IZ. This gives that v —
Xϊv' is in IZXt = IW, showing that IBn Π W C IW. The opposite
inclusion is trivial, so the induction is complete.

COROLLARY 4. The map C(A) —> C(A[[XU « ,XJ]) 0/ ίfee ciαss
group of A into the class group of A[[Xlf , Xn]] is one-to-one onto
if A is a regular noetherian domain.

Proof. Samuel [2, Prop. 1, p. 156 and Prop. 3, p. 138] has shown
that the map is one-to-one. Theorem 3 proves that it is onto in the
present case.

COROLLARY 5. Let A be a regular noetherian domain. Let M
be a multiplicative set of A[[XU , Xn]]. Then C(A[[XU , XJ]^)
is a homomorphic image of C(A).

Proof. Samuel [2, Prop. 2, p. 157] shows that C(R) —> C(RS) is
always onto. Corollary 4 supplies the rest.

COROLLARY 6. Let A be a regular noetherian domain. Let S
denote the nonzero elements of A. Then B' — A[[XU •••, Xn]]s is a
U.F.D.

Proof. Let W be an unmixed height 1 ideal of A[[Zi, •••, Xn]].

Then there is an unmixed height 1 ideal I of A such t h a t IW is

principal, say IW = (U). Then UB' = IB'-WB'f but IB'= B', so
WB' = VB' is principal.

REMARKS. (1) Samuel [2] has established the analogue of Corolary
4 for A[XU « , X J . This implies that Corollaries 5 and 6 also hold
for A[Xlf « , X J , Corollary 6 of course being trivial.

(2) As originally submitted, this note established Theorem 3 and
its corollaries only in the case that A is a Dedekind domain. In the
original presentation, Corollary 6 was the main tool for the proofs of
Corollaries 4 and 5. I wish to express my gratitude to the referee
for bringing SamuePs results [2] to my attention and for suggesting
the generalization to regular Noetherian domains. Lemma 1 is the
only addition necessary to effect the generalization.
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