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Throughout, A, B, and C denote (semi-simple) H*-algebras
whose respective decompositions into minimal closed ideals are
A=3DP A, B=3DBg, and C = 3PC,. It is assumed that
A is a right C-module and B is a left C-module, We define
a tensor product A4 XyB that is again an H*-algebra, and
show that it is isometric and isomorphic with an ideal in
ARBRC. As a corollary, AX¢B is strongly semi-simple if
A, B, and C are each strongly semi-simple. The converse to
the corollary is shown to be false. When A, B, and C are
closed ideals in some H*-algebra, with ordinary multiplication
as the module action, then Ay B is shown to be isomorphic
with the direct sum of all the one-dimensional ideals in
AnBnC., When A= L¥G), B=L¥H), and C = L*K), for
suitable related compact groups G, H, and K, then the module
actions are defined, and A&¢B can be constructed. When
G = H = K, it is shown that AQ¢B = L*G/N), where N is
the closure of the commutator subgroup of G. A conjecture
is stated that would generalize this result to the case where
K is a closed subgroup of G n H,

Since A ®Q,B will be represented in terms of ordinary tensor pro-
ducts AR B of H*-algebras, the requisite facts concerning A® B
are stated here (details may be found in [2]).

AR B is the Hilbert space completion of the space A Q' B of all
conjugate bilinear functionals 7'on A x B of the form T = >".a; R b;,
where T(a, b) = = (a,;, a)(b;,, b) (see [3]). We define (¢ @b)cRd) =
ac @ bd, and extend by linearity and continuity to multiplication on
AQ® B. Then

I. AR B is an H*-algebra and each A, ® B, may be identified
with a closed ideal in A & B.

II. AR B =3 (A, Bp) is the decomposition of A ® B into
minimal closed ideals.

III. A B is strongly semi-gsimple (see [5], p. 59) if and only if
both A and B are strongly semi-simple.

1. Temnsor products.

DEFINITION. Fy(A, B) will denote the collection of all finite formal
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sums of the form

Sacia;, b)), with a;,€ A,b;, € B, and ¢; € C; i.e. Fy(A, B) is the
free C-module generated by A x B.

F,(A, B) becomes an algebra and a pseudo-inner produect space if
the operations are defined by the formulas:

(c(a, b))-(c'(e, b)) = cc'(aa, BY') ,
Ae(a;, b)) = Z(n¢;)(a;, b;), v complex, and
(¢(a, b), (@', b)) = (¢, ¢')a, a')(b, b')

(the first and third must be extended by linearity). The positive
semi-definiteness of the pseudo-inner product follows from the fact that
(c(a, b), '@, b)) = @R bRc¢, o’ Qb Qc'); the other properties required
of an inner product obviously hold.

Let I} be the ideal in F,(A, B) spanned by the set of all elements
of the following forms:

1) c(a, + a,, b) — c(ay, b) — c(a,, b) ,
2) c(a, b, + b)) — ¢(a, b) — c(a, b,) ,
(3) (e, + ¢e)(a, b) — cia, b) — cy(a, b),
“) Ae(a, b) — e(ha, b) , and

(5) ae(a, by — c(a, \b)

for arbitrary a,a; € A; b,b,€ B;c,c; € C; and complex numbers \.
Let I, be the ideal in F,(A, B) generated by the set of all elements
of the forms:

(6) clcz(a, b) - cl(ac2! b) ’ and
(7 c.ei(a, b) — ei(a, c;b)

for arbitrary ae€ A, be B, and ¢; € C. Then let I'=1'\v I;=1+ I},
the ideal generated by the set of all elements of the forms (1)-(7).

ProrosiTioN 1. I} ={X € Fy(4, B): (X, X) = 0}.

Proof. Straightforward computations show that (X, Y) =0 if X
is of one of the forms (1)-(5) and Y = ¢’(a’, ’). Extending by linearity
we have immediately that (X, Y) =0 for all Xe I}, Y e FyA, B).
Suppose then that X = > ¢,(a;, b;) and that (X, X) = 0. It must be
shown that X e I].

If {c¢;}~, is not linearly independent, then we may assume that
¢, = S =ine;, and so
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X = 3 ¢(a;,b;) + <g Mci>(an, b,)

= ci(a;, b;) + g c;(\iay, b,)
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(B @, b) — Seua, )]

The expression in brackets is clearly an element of I}, call it v,. Thus
we have

n—1

2
= > > eilaij, b)) + 71,

Jj=11i=1

where a;; = a;, a; = N0, b, = b;, b, = b,. Repeating the process as
many times as is necessary we obtain

20 n—
X = Z <Ep (@, bii)> + Vo
J=1 \i=1

where v, € I} and {¢;}’=F is linearly independent. Then, for each fixed
index 4, by using an argument similar to the one above, we can write

20(1) ,aP—q(¢
S b) = 3 (5 ean biw)) + Yawo »

where Vi, € I3 and {a;;:5 =1, --+, 2" — g(4)} is linearly independent.
As a result, we have

;) 2¢(%)
X =23 Zc(“mbiﬂc)'i"Y,

where {¢;} is linearly independent, {a;;} is linearly independent for each
fixed 4, and v e I..

Fix any pair < 4,7 > of indices. By the Hahn-Banach Theorem
and the Riesz Theorem there exist o’ € A and ¢’ € C such that

HC’ H - H a H = 1’ (Ciy C’) = dz > O’ (a/ijy (I,,) - dii >0 ’

(¢p, &) =0 if ¢’ # 4,and (a;;,0') =0 if j’ = 5. Since F,4,B) is a
pseudo-inner product space, the Schwarz inequality holds. Thus if we
let o' = 3{b;j,: k=1, ---, 2}, we have

(X, ¢(d, &) | = (X, X)(c'(a/, ), ¢(, b)) = 0.
On the other hand,

(Xr c’(a,, b')) = meyk(cm’ C,)(a’mm a”)(bmnk’ b,)
=dd;; || b’ =0,

so that b = 0. If we now write
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2 Cil@ig, D) = @iy, 2bisi) + [ cil@is, bigi) — ez, 2 bisi)]
= ci(a"zjy 0) + A//;J' ’

where v{; is the expression in brackets, which is clearly an element
of I}, then we have

X = 2icla;, 0) + 7,

where v = >;,;7i;, and so X € I,

Fy(A, B) is a pseudo-normed space, with || X|* = (X, X). Let us
denote by .#,(A, B) its pseudo-normed completion, i.e. the collection
of all Cauchy sequences from Fy(A4, B). Define a mapping

@ Fy(A, By AR BRC
as follows:
p(Xela;, b)) = Ta,QRb;, Qe .

It is immediate that ¢ is a linear, homogeneous, multiplicative isometry,
and that its range is dense. Thus ¢ can be extended to an isometric
homomorphism on %#,(4, B) onto AQBXC. Note that || XY || =
Xl Y|l for all X, Y e FyA, B), since AQBXC is a Banach al-
gebra. Thus the operations defined on F,(A, B) can be extended to
F A, B), as usual.

Let I,, I,, and I denote the closures, in Z (A, B), of I, I}, and I’,
respectively. It is obvious from Proposition 1 that I, = {X € #,(4, B):
| X = 0}, i.e. 1i.e. I, is the closure of (0). Thus I, is a subset of every
closed subspace of #,(A4, B), which means, in particular, that I = I,. In
other words, I ecan be described quite simply as the closed ideal of .5 ,(4, B)
generated by the collection of all elements of the forms (6) and (7).

DEFINITION. AX,B, the tensor product of A and B, over C, is
the quotient algebra &,(A, B)/I.

A®,B is a normed space (as is always the case when a pseudo-
normed space is factored by a closed subspace). We proceed to identify
it with an ideal in ARBRC. Let D = ¢(I) and define a map
7: ARyB — (AQBRC)/D by the formula v(X + I) = o(X) + D. It
is clear that v is linear, and since v(I) = (0) + D =D,y is well
defined; it is multiplicative since @ is multiplicative. Finally, v is an
isometry. For if T= X+ Ie AR,B, then

17T = llpX + D|| = inf {|| pX -+ Z||: Z € D}

—inf{|pX + @Y |: Ye I}
=inf{| X+ Y|:Yel}=|T|,



TENSOR PRODUCTS OVER H*ALGEBRAS 861

since ¢ is an isometric homomorphism.

Since D is a closed ideal in the H *-algebra AQBRC, (AQBXC)/D
is isomorphic and isometric with the closed ideal D+, which we shall
denote by E. We summarize the foregoing information in the next
theorem.

THREOREM. There is an isometric isomorphism from ARyB into
AR BRC; its range s the closed ideal E which is the orthogonal
complement of the closed ideal D generated by all elements of the
forms

(i) a®bRce, — ac,®bRe, ,

(ii) a®@bRece, —aRecdbRec, .

Consequently, AQR,B 1is an H*-algebra; its minimal closed ideals
can be identified with those minimal closed ideals A,QBsQC, of
ARKXBRC that are orthogonal to D.

COROLLARY. If A, B, and C are strongly semi-simple, then
ARyB s strongly semi-simple.

The following proposition provides means by which it is easy to
construct examples for which the converse to the above corollary is
false.

ProposiTION 2. If A,®B,RQRC, is a minimal closed ideal in E,
then C, is of dimension one.

Proof. Choose a canonical basis {a;;®b,,&Qe¢,,} for A, QB:RC,
(see [2]). Since @;;® b, K¢c,, € E, it must be orthogonal to

;i R0 R CrnpCpn — XiiCp R0y R Crap

If the dimension of C, were greater than one, then it would be pos-
sible to choose % # p, and we would have

0 =(a;; QbR Couny Ci; Qb1 Q) € — €€, Q01,1 R Crie

= [l @ [P 1] bwa 1 1] € I

since (C,., €np) = 0. This, of course, is a contradiction.

COROLLARY. If C has mo one-dimensional mintmal ideals, then
ARyB = (0).

2. Examples. Perhaps the easiest method of obtaining examples
of H*-algebras A, B, and C related as above is to let A, B, and C be
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closed ideals in some H *-algebra .. The structure of AX,B, under
such circumstances, is described in the next proposition.

ProPOSITION 3. Suppose that A, B and C are closed ideals in an
H*-algebra &, If A and B are viewed as C-modules with ordinary
multiplication in . as the module action, then AX),B is isomorphic
with the direct sum of all the one-dimensional minimal ideals
in ANBNC. The isomorphism is an isometry if and only if the
identity of each one-dimensional minimal ideal in A N BN C has norm
one.

Proof. Choose a canonical basis {u}} for & Then {a;;} =
A =n{ul}, {4} = BN {ud}, and {ct.} = C N {ul,} are canonical bases
for A, B, and C, respectively and {aZQb; @ck.} is a canonical basis
for AQBRC. If af@®b%,®c?, € E, then, by Proposition 2, ¢}, = ¢’
is the identity of a one-dimensional minimal ideal. If « # v, then

BRI — 4 QR = R e D.

Similarly, if 8 s v, then af@bf,Xc¢* € D. Thus if an element of a
canonical basis is to be in E it must be of the form ¢"®c'Rc".
Relatively straightforward computations show that each such basis
element is orthogonal to D, and the proof is completed.

Suppose now that G, H, and K are compact groups, and that
0: K—G and ¢: K— H are continuous homomorphisms. Then 6(K)
and @(K) are closed subgroups of G and H, respectively, L*(G) and
L H) become modules over LK), with the module action defined by:

grh@) = | _g@02))k@dz,
Bxehy) = | k@@ y)dz ,

for all g € LXG), h € LXH), k€ LXK), x € G, and y € H (all integra-
tions are with respect to normalized Haar measures). If we let A =
IXAG), B=L*H), C = LK), then AR, B is a well-defined H *-algebra.
As was remarked in [2], AQBXC can be identified with LG x H x K),
and so, by the Theorem of §1, AX.B can be identified with a closed
ideal J in L*(G x H x K). At one extreme, suppose § and ¢ map K
onto the identities of G and H, respectively. It is not difficult to see
that in this case AX,B can be identified with L*G x H).

At what might be considered another extreme, suppose that G
and H are closed subgroups of some compact group, that K is a closed
subgroup of G N H, and that ¢ and ¢ are the inclusion maps. Define
an equivalence relation on G x H x K as follows: (z, vy, 2) ~ (4, v, w)
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if and only if F(x, v, 2) = F(u, v, w) for all FF e J. Then M = {(x, y, ?):
(x, ¥, 2) ~ (e, ¢, )} is a closed normal subgroup of G x H x K, and its
cosets are the equivalence classes of ~. All functions F ¢ J are thus
constant on the cosets of M, providing a mapping + from J to
I}M(G x Hx K)/M). The map + is an isometric isomorphism and its
image is an ideal. On the basis of the Tannaka Duality Theorem (see [4],
p. 439) it seems reasonable to conjecture that «r is surjective, so that
ARyB can be identified with L*(G x H x K)/M). The conjecture has
not been settled in general, but let us consider the very special case
where G = H = K. Then, by Proposition 3, AX,B can be identified
with the direct sum of all one-dimensional minimal ideals in L¥G),
which in turn is isomorphic and isometric with L*(G/N), where N is
the closure of the commutator subgroup of G. Since G/N and
(G X G x G)/M are isomorphic via the mapping «N — (x, ¢, )M, the
conjecture is verified in this special case.
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