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DEBORAH TEPPER HAIMO

The object of this paper is to characterize functions which
have L? expansions in terms of polynomial solutions P,,.(x,t)
of the generalized heat equation

" L _0
*) [8x2+ — ap |M@ )= ulE b

and in terms of the Appell transforms W,,.(z,t) of the P,,.(x,t).
H * denotes the C? class of functions u(x, t) which, for a < t < b,
satisfy (*) and for which

(e, €) = S“G@’ i b — tuly, ¢)dpy),

dp(x) = 2(1/2)—14[[' <,, + %)]"%“dm ,

for all ¢,t',a <t <t<b, the integral converging absolutely,
where G(x,y;t) is the source solution of (*). The principal
results are the following:

THEOREM. Let u(x,t)e H*, —6 <t <0, and
u(z, O[Ga; —t)]E e L2

for each fixed t —6=<t<0, 02 < . Then, for —6=<t<0,

}rim rG(x; —1) tu(w, t) — i P, (2, —1) : dp(x) =0,
- Jo n=0

and

S”G(oc; —t) @, B2 dp) = S a2 b7 120,

0 =0
where

l”(u + %)
b, = [2» m! ] T ,
['(u + 0} + n)

and

4 = bnS:uw, )Wy, —)dpu(y) .
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THeoreM, If u(x,t)e H*, 0 < t < g, and if
u(ix, t)[G(x; t)]W/2 e L2
for each fixed t,0< =<7, 0 <2 < oo, then, for 0 < t < g,

lim SNG(x; t)
V=)o

N
u(@xy t) - Z anPn,v(w’ —'t) Zd,a(x) = O y

n=0
and

S”G(x; ) lutiz, ©) | dp@) = S | an |2 b7

0 n=0
where b, is given above and
= bnru(ix, W (@, 8)d ) .
0
TueoreMm. If u(x,t)e H*, 0 < ¢ < t, and if

u(x, O[G@ix; £)]4/? e L2
for each fixed t,0< o=t 0=<2 < oo, then, for 0 < o < ¢,

lim rG(iw; £)
N—o Jg

u(x,t) — gaan,v(w, ) 2d/x(oc) =0,
and
| Gt 0 0, 02 duo) = 50670 o,
where b, is given above, and
tn = bnS:u(x, 1Py, (@, —8)dp(@) .

The theory is an extension, in part, of recent results of P.C.
Rosenbloom and D.V. Widder.

1. Preliminary results. The generalized heat polynomial P, ,(x, t)
is a polynomial defined by
1
F(u —)
+ 2

(1-1) Pn,,,(x, t) = 102;2”‘(}2) F(u + l T k> pn2kgk ,
2

v a fixed positive number. Note that when v = 0, P, (v, t) = v,,(x, t),
the ordinary heat polynomials defined in [8; p. 222]. For ¢t >0, P, (z,t)
has the following integral representation.

(L.2) Pz, 1) = | v7G(@, y; i),

dp(y) = 2“’”“”[1“(11 + -;-)]—lm'“dx .
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As may readily be verified, for —co < @, t < oo, P, (2, t) satisfies the
generalized heat equation

(1.3) A, £) = ;”—tum, ),

where 4,f(x) = f"(x) + 2v/x) f'(x). We denote by H the class of all
C* functions which satisfy (1.3). The source solution of (1.3) is given
by G(x; t), where

1 \¥*2 22+ yz xy
1.4 G, 43 t) = () (222 A(2),
(1.4) (@, y; t) 5r) P T 5
with 7 (z) = C,z"2~ I,_»(2), C, = 22~ I'(v + (1/2)), I(z) being the
Bessel function of imaginary argument of order 7, and where G(x;t) =
G(x,0;t). For a detailed study of the properties of G(z, y; t) see [1].
Corresponding to the generalized heat polynomial P, . (x,t) is its
Appell transform W, (x,t) defined by
1

(1'5) an(x!t) - G(xvt)an,»<%‘7 'ﬁ?)’ t> 09 n = 0’ 17 2’ D)

which is also a solution of (1.3). It follows readily from the definition
of P, (x,t) that

1.6y W,.(z,t) =t—G(,t)P,, (¢, —t), t>0,n=0,1,2, .-,

The importance of P, ,(x,t) and W, (¢, t) in our theory is that
they form a biorthogonal system on 0 < 2 < . We have, for ¢ >0,

(L. |, W, P, —0p1(@) = == 0,
where
(1.8) b, = r(u + %) /[2‘”n!F<v + —; + n>] :

A consequence of (1.7) is a fundamental generating function for the
biorthogonal set P,,.(x, —t), W,,.(x,t). We have, for 0 <2,y < oo,
—s<t<s, 8>0,

(1.9) G,y 8 + t) = 5. b, W, (0, $)P,.(x, 1) .
n=0

2. Inversion. For t > s, let us set

o (v]2)+(1/4)
2.1) (@, y;s,t) = §b<'§_> eI W (4, t)P,,(y, —5) ,
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where b, is defined by (1.8). Then, as a consequence of the defi-
nitions and of (1.9), we have

(2, y; 8, t)

2.2 (v[2)+(1/4)
(2.2) :%) o u—niGee ) G(o1/B3](E T+ 8), YV & & 8)/28; & — 8) .

From the well known properties of G(x,y;t) — see[1; § 4] — the following
results are immediate.

LEMMma 2.1.
23) (@ Z@yyst)=0,0=0,y<~,s<t,
(2.4) (b) lim o7 (x,y;s8,t) =0, 0= < o,8<t,

Yoo
(2.5) (c) lirtriﬁf(x,y; s,t) = 0 uniformly 0 < 2,y < o,
ly —x|=0>0, 0 any fized positive number.
(d) For x fixed, 0 = 2 < oo,
lim(® . . _
(2.6) | (@, Y8, 0)dpy) =1, O0=sa<e<bsco,
=0, 0sa=sb<er< o,
=0, 02<a<bs o,

It is now easy to establish the following fundamental inversion
theorem.

THEOREM 2.2. If ¢ belongs to L' 0, ) and s continuous at «,
then

(2.7) lim | 52w, 4; 5, DWW = #(@) -

3. The Huygens property. A function w(z,t) is said to have
the Huygens property for a < ¢ < b if and only if u(x,t)e H there
and for every ¢, t/,a <t' <t <b,

3.1 wa, t) = | 6@, v;t — Oyutw, )iuw) ,
the integral converging absolutely. We denote the class of all functions
with the Huygens property by H*. Functions of class H* have a

complex integral representation as given in the following result.

LeMMA 3.1. If u(x,t)e H*, a <t <b, then for a <t <t <b,
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(3.2) u(@, t) = | Gliz, ;¥ — tyuy, )dpu) -
0

The fact that P, (x,t)e H* for —co <t <co, and W, (x,t)e H*
for 0 < t < <o enables us to conclude that certain integrals involving
functions of H* are constant. A general result was proved in [5],
but we state here the specific forms required in this theory.

THEOREM 3.2. If w(x, —t)e H* for 0 <t < <o, then
(3.3) [ ut, O W,..(a, (@)
18 a constant.

THEOREM 3.3. If w(x,t)e H* for 0 <t < =, then
(3.4) S:u(m DW,.(x, )duz)
18 a constant.

THEOREM 3.4. If w(x,t)e H* for 0 <t < <o, then
(3.5) [, 0P, (o, —t)du(z)
is a constant.

4. L’ expansions. We establish criteria for a function wu(x,t)
so that the series >7,a,P, . (x, —t) converges in mean, with weight
functions G(x, —t), to u(zx, t).

THEOREM 4.1. Let w(x,tye H* for —0 =t <0, and
u(x, )Gz, —t)["*e L*
for —0 =t<0,0=2< . Then, for —o =t <0,

(4.1) }}ESZG@, —1) [ u(, £)— ﬁi a,P, (¢, —t)| dpw) = 0
and

(4.2) |G, =) [uta, ) dp@) = 53 S g
where b, is given by (1.8) and

(4.3) a, = b, "uly, OW,..v, —dp(w) -
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Proof. For t fixed, let #(x,t) be a continuous function vanishing
outside a finite interval and such that, for ¢ > 0,

@8 [ lu, —016@ 1" — o, 0 Fdpe) < 0<t=o.
Now set

(4.5) ¥a(@, 1) = P, (%, —)[G(z, 1)]'*, 0<t=o.
Then, by (2.1), we have

(4.6) (Y 8, 1) = gobnt”“m(w, Oy, 8) ,
where b, is defined by (1.8). Hence
[ o7, 58, 090, D) = |0, ) S0, 0.0, 9)

= bt @, O ¥, 9500, D) <

If we set

@n A = b v e, apw)

and apply Theorem 2.2, we find that

8 3 AW, t) = lim |5 @, v 5, 06, 0p) = 6, 1) .

If we multiply both sides of (4.8) by ¢(x, t)d(x) and integrate between
0 and <, we obtain

5, 4.0 "t t5ta, Dpw) = |, gt

or, by (4.7),

(4.9) Sy A = | o, 0@

Now, let

@10)  e(t) = bt uly, —OIG(w, O (v, ) -
Consider

@1y 1= {u, ~0i6@, 1" — 5 et ) due) .
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Since, by 1.7, we have

(4.12) | ¥l e, (@) = 20,

n

with b, given in (1.8), it follows that
= n 2k
I=\"Tuw, ~H1G@, Hiue) — ci(t)—t—

=

[, PG, D) + 3, 5140 — e — 3605

/c k=0 k

Il

)
l,
|| e, —OFG@, Hin@) + 52 40 — 2 5L A
[, —b16@, 01 — 5 Ay, )} dpx)
= 2{ (u(w, ~91G(@, HI* — (@, OFdp)

2[ o0, 1) — £ Atyta, 0 duto) -
By (4.4), we have
1< 2 + 2| 9@, (o) + 2| 35 AxOvia, Hdp)

— 4|5, tap@) S 40w, b

< 2%+ zgjt/’ﬁ(x, tdp() + 2 ,Z=0 AL(t) 2

n

— 4 ZOA,,@)SO 55, (e, Do)

th }

b, )~

It follows, therefore, by (4.9), that if % is sufficiently large, I < 4e.
Hence

< % + 2{5 (@, () —

@13 lim | @, ~0[6@, 01 — S et o] duw =0,
N-—oo JO k=0
or, by (4.5), we have (4.1) with ¢,(t) = a@,. Theorem 3.4 establishes

the fact that a, is independent of ¢.
Parseval’s equation (4.2) follows since

S:G(ac, t) | w(e, —t) P dp(e) = S: 'gocn(t)%(x, t)rd#(x)

) . t2n
=2 a, =,
n=0 b

n
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with the last equality a result of (4.12).
An example illustrating the theorem is given by u(x, t) = e**_# (ax).
This function satisfies the hypotheses for —c < ¢ < 0 and we find that

.14 S:G(x, t) 7 (aw)e M dp(x) = 7 (20°t) 0<t< oo,
whereas
(4.15) Sla, 2 = So @tz
=0 n n=0

= 7 (2a%) , 0<t< <,
since
(4.16) a, = bnS:e—a?tf(a?/) W,W(y, t)d/x(y) , 0<t< o

= (2a)*d, .

Although, in this example, u(x,t)e H* for —c <t < o, the ex-
pansion (4.1) does not hold in the extended strip. Note that, in this
case, the requirement that wu(w,t)[G(x, —%)]'* be in L* fails for
0 <t< e, A modification of Theorem 4.1 when wu(x,t)e H* for
0 <t = o is given by the following result.

THEOREM 4.2. If u(z,t)ye H* for 0 <t = o, and if
u(ix, t)[G(z, t)]'*e L
for each fixed t,0 <t =< o0, 0= < oo, then for 0 <t = o,

@1 lim S:G(x, ) lu(ix, t) — i 4, P, (2, —t)| dp@) = 0,

and

(4.18) |, 6@, 1) lutiz, o1 @) = 54 lan

where b, is given by (1.8) and

(4.19) a, = b,,S:u(ix, HW, (v, Hdu) , 0<t<o.

Proof. As in the preceding proof, we have
lim [z, DG, O — 35 ety (e, )] du@) = 0,
N—ooo JO n=0

with
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u®) = byt=>| iy, DG, DIy, Opw) -

Hence (4.17) holds with e¢,(t) = a,, which, by Theorem 3.5, is inde-
pendent of ¢. Further,

oo

cuO¥ra(@, 8| dpe()

Ms

S:G(a’/‘, t) | ui, t) P dp(z) = S

=)

il

0
2

b,

B

Sk 3

| l*

=2

n=0

which is the Parseval equation (4.18).
The example of the preceding theorem satisfies these hypotheses

for 0 < ¢t < c, and we have, for 0 < ¢t < oo,

S“ G(x, t)e™"_7*(law)dpu(®) = 7 (20%) ,

whereas
a, = bngje““f(iax) W, (@, Hdu)
so that
S0, = (e

Criteria for expansions in terms of W, . (x, t) are given in the following
result.

THEOREM 4.3. If w(x,t)e H* for 0 < o = t, and if
w(x, [Glw, t)]"* e L
for each fizxed t,0 =0 <%, 0=12 < o, then for 0 <o = t,
(4200 lim S“G(im, ) Iu(x, 8 — S a, W, )| de@) =0,
—o0 J0 n=0

and

@2y [7GGe, 1) lule o Fdp) = 35 @) a,

where b, 1is given by (1.8) and

(4.22) a, = b,,S“uw, )P, (@, —t)dp(x) GSt< oo,
0

Proof. Again, as in Theorem 4.1, since u(x, t)[G(iz, t)]"*e L?, we
have
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@23)  lim || utw, 916G, 91 — 5 eu®a(@, )| dpx@) = 0,
with
(4.24) e.(t) = b,,t—z"g:u(x, DG, 8], HAp(z) .
Now, (4.23) can be written in the form
Il\riﬂS:G(ix, ) lu(w, £ — gocn(t)(zt)”“””tz”Ww(x, B dp@ =0,
with (4.24) becoming
eu(t) = bnt““(Zt)‘”‘“/z’S:u(x, 8P, (@, —t)dmz) .

Hence, if we set a, = ¢, (t)t™(2t)**"»  q, is independent of ¢, by
Theorem 3.6, and (4.20) is established. Moreover, Parseval’s formula is

S:u(ix, ) | u(w, t) | dp(w) = ;:“0 | c2(t) |2_?.

= S ey 1%l
n=0 b

n

Note that the function u(x, t) = G(z, k; t) satisfies the conditions of
the theorem for 0 < ¢ < o. In this case, we have

a, = b,k™ ,
and hence
T 1 S O TA N ) 5
2 teE b, “<2t> j(2t>'
whereas
oo . . . _ 1 2v+41 kZ
SOG(w,t) |G, ; ¢) | dyu(o) = (g) f( 2t) .
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