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Let A be an ̂ -square positive semi-definite hermitian matrix
and let Dm(A) denote the maximum of all order m principal
subdeterminants of A. In this note we prove the inequality

(Dm{A)yί™ ^ (Dm+ί(A))W+1) , m - 1, , n - 1 ,

and discuss in detail the case of equality. This result is closely
related to Newton's and Sz£sz's inequalities.

Let A — (an) be an ^-square positive semi-definite hermitian matrix
with eigenvalues \ ^ Ξ> Xn ;> 0. We introduce some notation. For

1 ^ m ^ n let Qm,n denote the set of all ( n ) sequences ω = (ωu , ωw),
\ΊΪIJ

1 ^ ft>i < <o2 < < ωm ^ π . Let A[ω | ω] denote the m-square sub-
matrix of A whose (i,j) entry is aω.ωj, i,j = l, , m.

THEOREM. If A is a positive semi-definite hermitian matrix
then

max (det (A[a \ α]))1/m

^ max (det (A[ω \ ω]))1/w+1, m = 1, , n - 1 .

Equality holds for a given m if and only if either A has rank less
than m or A[ω° \ ω°] is a multiple of the identity, where the sequence
ω° e Qm+1,n is one that satisfies

( 2 ) det (A[ω° | ω0]) = max det A[ω \ ω] .

There are two classical results that are closely related to the
inequalities (1). These are Szasz's inequalities and the Newton in-
equalities. Szasz proved that [1, p. 119]

( Π (det (A[a\a])γι(D)llm

/ / * v \ l / ( m + l)

Π (det(A[ω\ω])y'(m%))
Q J

Newton's inequalities [1, p. 106] state that if Em(A) is the mth ele-
mentary symmetric function of the nonnegative numbers λx, , λw then
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However,

(5) Em(A)=ΛΣi det(A[α|α])

and hence (4) can be written

det (A[a \ a]

Σ det

Notice that (3) compares the geometric mean of the principal sub-
determinants of order m with the geometric mean of the principal
subdeterminants of order m + 1. Also (6) makes the same kind of
comparison for the arithmetic means of these quantities. The result
(1) compares the maxima of the two sets of subdeterminants.

To prove the theorem we state and prove a preliminary lemma.

LEMMA. If A is a positive semi-definite n-square hermitian
matrix then

( 7 ) max det (A[a | a]) ^ (det (A))mln , 1 ^ m g n .

Equality holds if and only if either the rank of A is less than m
or A is a multiple of the identity matrix.

Proof. We use some properties of the compound matrix of A,
denoted by Cm(A). The essential facts concerning Cm(A) are [1, pp. 17,
24, 70]:

( i ) det (Cm(A)) = (det ( A ) ) ^ (Sylvester-Franke theorem);
(ii) if A is positive semi-definite hermitian, so is Cm(A);

(iii) the characteristic roots of Cm(A) are the (n) products
\m/

Π λω., ω e Qm>n .

We want to prove that

( 8) max det (A[a \ a]) ^ (det (A))mln .

If we apply the Hadamard determinant theorem [1, p. 114] to Cm(A)
then we conclude from (i)

( 9 ) Π det (A[a \ a]) i> det (Cm(A)) - (det ( A ) ) ^ .
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If for every a e Qm,n9 det (A[a | a]) were strictly less than (det (A))mln

then from (9) we would conclude that

(10) (det {A)il~-ι) < ((det (A))~'*)(1) = (det ( A ) ) ^ ,

a contradiction. Thus (8) holds. If (8) were equality suppose first
that not all det (A[a \ a\), ae Qm,n are equal. Then from (9) we would
obtain the same contradiction (10). Thus for equality to hold in (8)

det (A[a \ a]) = (det {A))mln

for all a e Qm,n. This means that all the main diagonal elements of
Cm(A) are equal. If this common value is 0 then A has rank at most
m — 1. If the common value is nonzero then (9) is equality through-
out and as we know from the case of equality in the Hadamard
determinant theorem Cm(A) is a multiple of the identity. Thus from
(iii) we know that the characteristic roots

•TO

Π λ α . , oceQmtn, m < n ,

are equal. But then it follows that X1 = = λΛ and hence A is a
multiple of the identity, completing the proof of the lemma.

To prove the inequality (1) we apply the lemma to submatrices.
Let ω° be a sequence in Qm+Un for which

(11) det (A[ω° \ ω°\) = max det (A[ω \ ώ\) .

For oteQm,n and a a subsequence of α>°, i.e., α c < we know that
A[a I a] is an m-square submatrix of A[ω° | ω°]a Hence, by the lemma,

(12) max det (A[a \ a]) ^ (det (A[ω° \ ω°]))m/(m+1) .

Thus a fortiori

(13) max det (A[a | a]) ^ (det (A[ω° \ ω°]))m'{m+1) .

Applying (11) we obtain the inequality (1) from (13).

If equality holds in (1) then (12) must be equality as well. There-
fore either the rank of A[ω° \ ω°] is less than m or A[ω° \ ω°] is a
multiple of the (m + l)-square identity matrix. If the former is the
case then det (A[ω° \ ω°]) = 0 and hence, since (13) is equality, every
mth order principal subdeterminant of A is 0. Thus the rank of A is
less than m.
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