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A SUBDETERMINANT INEQUALITY
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Let A be an n-square positive semi-definite hermitian matrix
and let D,(A) denote the maximum of all order m principal
subdeterminants of A. In this note we prove the inequality

(Dm(A>)1/m = (Dm+1(A))1/(m+U ’ m = ly e, M — 1 ’

and discuss in detail the case of equality. This result is closely
related to Newton’s and Szasz’s inequalities.

Let A = (a;;) be an n-square positive semi-definite hermitian matrix
with eigenvalues v, = --- =\, = 0. We introduce some notation. For

1=m = nlet Q,,, denote the set of all <,;‘L> sequences @ = (w,, -+ +,®,,),

12w <o, < v <w, =n. Let Alw|w] denote the m-square sub-
matrix of A whose (¢, J) entry is .., %, =1, ---, m.

THEOREM. If A is a positive semi-definite hermitian wmatrix
then

max (det (A[a | a]))'™
( 1 ) GEQy, g
= max (det (4]w | w]) ™+, m=1---,n—1.
©E€Qm1+1,n
Equality holds for a given m if and only if either A has rank less
than m or Alw’| '] is a multiple of the identity, where the sequence
"€ Q,...,, ts one that satisfies
(2) det (AJ0° | ®*]) = max det AJw | 0] .
©€Qpm 11 p
There are two classical results that are closely related to the
inequalities (1). These are Szasz’s inequalities and the Newton in-
equalities. Szasz proved that [1, p. 119]

n 1/m
(I (et (Afer] a)y'(=))
GEQy, p
( 3 ) n 1/(m+-1)
= (T (@et (Ao o))/6)"
©EQy +1,n

Newton’s inequalities [1, p. 106] state that if E,(A) is the mth ele-
mentary symmetric function of the nonnegative numbers )\, -+, A, then
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(4) (EAA)/(;@@))“” > (Em+1(A)/<m :L_ 1)>1/(m+1) .
However,
(5) EA) = 3 det(Ala]a])

@EQm,n

and hence (4) can be written

(5 datalan](2)"
2( >, det (A[wlco])/(m?jr 1>>1/(m+1) .

O€Qm1+1 n

(6)

Notice that (3) compares the geometric mean of the principal sub-
determinants of order m with the geometric mean of the principal
subdeterminants of order m + 1. Also (6) makes the same kind of
comparison for the arithmetic means of these quantities. The result
(1) compares the maxima of the two sets of subdeterminants.

To prove the theorem we state and prove a preliminary lemma.,

LEMMA. If A is a positive semi-definite n-square hermitian
matrix then

(7) r&ax det (Al | &)) = (det (A)™'™, l1=mzZn.

Equality holds if and only vf either the rank of A is less than m
or A is a multiple of the identity matriz.

Proof. We use some properties of the compound matrix of A,
denoted by C,.(A). The essential facts concerning C,,(4) are [1, pp. 17,
24, 70]:

(1) det (C,(A)) = (det (4)") (Sylvester-Franke theorem);

(ii) if A is positive semi-definite hermitian, so is C,(A);

(iii) the characteristic roots of C,(A4) are the (;:’@) products

f[ Noyy  DEQ,,, .

=1
We want to prove that

(8) max det (Ala | a]) = (det (4))™'" .

“E€Qm,n

If we apply the Hadamard determinant theorem [1, p. 114] to C,(4)
then we conclude from (i)

(9) T det (Afa| a]) = det (Co(A)) = (det (),

€, n
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If for every ae Q,,,, det (Ala | a]) were strictly less than (det (A))™/"
then from (9) we would conclude that

10 (det (4D < ((det (4™ = (et (4)*),

a contradiction. Thus (8) holds. If (8) were equality suppose first
that not all det (Al | a]), @€ Q,,,, are equal. Then from (9) we would
obtain the same contradiction (10). Thus for equality to hold in (8)

det (A[a | a]) = (det (A)™*

for all e @,,,,. This means that all the main diagonal elements of
C.(A) are equal. If this common value is 0 then A has rank at most
m — 1. If the common value is nonzero then (9) is equality through-
out and as we know from the case of equality in the Hadamard
determinant theorem C,(A) is a multiple of the identity. Thus from
(iii) we know that the characteristic roots

Hlx%., ae@,., mn,
by

are equal. But then it follows that A, = -.- =X, and hence 4 is a
multiple of the identity, completing the proof of the lemma.

To prove the inequality (1) we apply the lemma to submatrices.
Let @ be a sequence in @, ., for which

(11) det (4]0’ | ©°]) = max det (Alw | w]) .

®EQpy +1,n
For e @,,, and « a subsequence of «°, i.e., &« C®’, we know that
Ala | af is an m-square submatrix of A[w’|®"]. Hence, by the lemma,
(12) max det (Afa| al) = (det (Al | w]))y™/mt0 |

BEQy 5 ¥CO
Thus a fortiori

13) max det (Al | a]) = (det (A]w’ | @°]))™/ ™0,

FEQy n

Applying (11) we obtain the inequality (1) from (13).

If equality holds in (1) then (12) must be equality as well. There-
fore either the rank of AJw’|®°] is less than m or A[w°|®’] is a
multiple of the (m + 1)-square identity matrix. If the former is the
case then det (A[0°| ®°]) = 0 and hence, since (13) is equality, every
mth order principal subdeterminant of A is 0. Thus the rank of A is
less than m.
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