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In his paper, Rings with injective cyclic modules, trans-
lated in Soviet Mathematics 4 (1963), p. 36-39, L. A. Skornjakov
states the following lemma: If a cyclic R-module M and all
its cyclic submodules are injective, then the partially ordered
set of cyclic submodules of M is a complete, complemented
lattice.

An example is constructed to show that this lemma is
false, thus invalidating Skornjakov's proof of the theorem:
Let R be a ring all of whose cyclic modules are injective.
Then R is semi-simple Artin. The theorem, however, is true.
(See Osofsky [4].)

The theorem, however, is true. (See Osofsky [4].)

In this paper, all rings have identity and all modules are unital

left modules. Jΰl will denote the category of ϋί-modules, and BM will

signify Me JEίl.

Let Q be a commutative, left self injective, regular, non-Artin

ring, and let I be a maximal ideal of Q which is not a direct sum-

mand of QQ. (For example, let Q be a direct product of fields, and I

a maximal ideal containing their direct sum.) Let N = Q 0 Q/I. We

observe the following:

1* QN is injective* Q is injective by hypothesis, and Q/I is a

simple module over the commutative regular ring Q; hence injective

by a theorem of Kaplansky. (See [5].)

2* QM £ QN is a direct summand of QN if and only if QM is

finitely generated* If QM is a direct summand of QN, QM is gener-

ated by the projections of (1, 0 + 7) and (0,1 + I ) . If QM is finitely

generated, and π is the projection of JV onto (Q, 0 + I), then π(qM)

is finitely generated. Hence π(QM) is a direct summand of QQ. (See

von Neumann [6].) Say Q = π(QM)Q) K. Since π(QM) is projective (it

is a direct summand of Q), QM = (π(QM))' φ (Ker π Π QM). Since Q/I

is simple, Q/I = (Ker π Π QM) 0 K2 where K2 = 0 or Q/I. Then

3* The direct summands of N do not form a lattice* In par-
ticular, Q(l, 0 + I) Π Q(l, 1 + !) = (/, 0 + I) is not a direct summand
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of (Q, 0 + I), hence not of N.

N is not a counter-example to Skornjakov's lemma, since N is not
cyclic. However, properties 1, 2 and 3 are preserved under category
isomorphisms. For we have:

PROPOSITION. RM is finitely generated <=> the union of a linearly
ordered chain of proper submodules is proper.

Proof. ==> Let M = Σ?=i R%i> a n d l e t {Nμ} be a linearly ordered
chain of submodules whose union is M. If XiβN^, then {χi\i =
1, , n] S A^, where y = max {μ* 11 ^ i ^ w}. Then ikf = iVv.

<= Given ΛΛf, let fc$ be the smallest cardinal such that M has a
generating set of cardinality ^ . Index such a generating set {Xμ}
by {μ\μ < Ω}, where Ω is the first ordinal of cardinality fc$. Then
{Σ^M- -β̂ y} is a linearly ordered chain of submodules whose union is M.
If Ω is a limit ordinal (that is, if ^ is infinite), then each Σ ^ μ S v̂
is generated by less than y$ elements; hence proper.

Thus M finitely generated corresponds to the categorical property
that the collection of nonepimorphic monomorphisms into M is in-
ductive under the ordering: / ^ g if and only if there is an h with

Let R = HomQ (Q φ Q, Q 0 Q). By Morita [3], Theorem 3.4, the
functor Hom Q (QφQ, ): QWl—> JSJl is a category isomorphism. Hence

RM = Homρ (Q φ Q, iNΓ) has properties 1, 2, 3. Moreover, if K =
{λ G i? I (Q φ Q)λ g (0, /)}, then M is isomorphic to i2/if since Q(Q φ Q)
projective implies the natural map from R = Homρ (Q φ Q, Q 0 Q ) ^
HomQ (Q φ 0, Q φ Q//) = ikί is an epimorphism. Hence M is cyclic,
and as in 2, every direct summand of M is cyclic. Thus M is the
required counter-example.

We conclude with the observation that the technique used in 2
gives us a categorical equivalence to regular rings which is closer to
the usual definition than Auslander's theorem that R is regular if and
only if the global flat dimension of R is 0. (See Auslander [1].)

PeBWl is a progenerator if it is finitely generated, projective, and
every MeBW, is an epimorphic image of a direct sum of copies of P.

PROPOSITION. The following are equivalent:
1 Although the categorical definition of finitely generated appears in H. Bass,

The Morita theorems, University of Oregon (mimeographed notes), the author found
no proof in the literature that this is equivalent to the module definition, and so
is including this proof for completeness.
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(a) R is regular.
(b) Every finitely generated submodule of a projective module is

a direct summand.
(c) There is a progenerator P e Jΰl such that every finitely gener-

ated submodule of P is a direct summand.

Proof, (b) => (a) (See von Neumann [6].)
(a) => (c) R is a progenerator with the required properties.
(c) => (b) Let N be a projective module, M a finitely generated

submodule.

Let P be the progenerator of condition (c). Then there is an
epimorphism /: 2* φ P^ —> iV. Since N is projective, this splits and
Σ(BPi = N'(B ker /, where N' **> N. Thus M is a finitely generated
submodule of Σ φ Pi9 and if it is a direct summand of Σ φ P<, it is
a direct summand of N.

Since If is finitely generated, M is contained in a finite direct
sum Σ5=i Pj If w = 1, Λf is a direct summand of P by hypothesis,
and hence a direct summand of J fφP^ Now assume any finitely
generated submodule of Σ?=ί ^ * s a direct summand. Let πn be the
projection of Σ5=iPy o n t o -Pn Then τrΛ(M) is a direct summand of
P n , say PΛ = 7ΓW(M) φ ifx. Ker ττn Π Λί is a direct summand of M,
hence finitely generated. Then by the induction hypothesis, Σ5=ί -PJ —
(Ker πn Π M) φ i ζ . Then Σ;=i -Pi = ^ Ί Θ #2 Φ Λf, so i f is a direct
summand of Σ φ P*, and hence of iSΓ.
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