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Using the theory of double centralisers due to B. E. Johnson,
we define a QTF*-algebra as being a I?*-algebra, A, such that
the algebra of double centralisers of each closed *-subalgebra
B is contained in a suitable related closed *-subalgebra B0Q.

After obtaining explicit descriptions of the algebras of
double centralisers of commutative and noncommutative £>*-
algebras, we prove that in the general noncommutative case
a I7*-algebra is & QT7*-algebra, and a QWΓ*-algebra is an
AW*-algebτa, while in the commutative case the QW* and
AW* conditions are equivalent.

We prove that if A is QW* then so are its centre, any
maximal commutative *-subalgebra, and any subalgebra of the
form eAe for e a projection in A.

We shall be concerned with centraliser theory, for the basic details
of which reference may be made to Johnson [2], [3].

I should like to take this opportunity of expressing my sincere
gratitude to Dr. J. H. Williamson, my research supervisor, for his
advice and encouragement.

DEFINITION 1. A left centraliser j ^ ~ oϊ the algebra A is a linear
map ^ of A into itself such that j^ζxy) = (J7x)y for all x,ye A.

A right centraliser 6^ is a linear operator on A such that S*(xy) =
x(S*y) for all x,ye A.

A double centraliser (the concept is due to Johnson [2]) is a pair
of linear operators (^7 Sf) such that x-(^y) — {S^x)-y for all x,yeA.

The set of all double centralisers on A is denoted by Q(A).

We will assume throughout that xA — 0 or Ax = 0 only holds for
x = 0. We note that this holds for l?*-algebras since xA = 0 => xx* —
0 ==> x = 0, and Ax = 0 ==> x*x — 0 => x = 0.

It is not difficult to see that defining (J7~x9 Sζ) e Q(A) for x e A by

l(y) = xy, <9*x{y) = V%9 and algebraic operations in Q(A) by

^ί, Si) =
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we have A embedded as a subalgebra of Q(A), which is an algebra
with identity. A = Q(A) if and only if A has an identity. Also, for
(^7 &*)e Q(A), ^~ is a left centraliser and &> is a right centraliser,
and either of ^,£^ determines the other uniquely.

If A is commutative, the notions of right, left and double centraliser
coincide, and for ( ^ £f) e Q(A) we have

PROPOSITION 1. If A is a Banach algebra then all double centralisers
are continuous.

Proof. Suppose (^7 £f) e Q(A) and say xn -> x, ̂ xn -* y. Then

—* z-y

So 2(2/ - ^Ίc) = 0 for all z e A i.e. A(y - ^a?) = 0 and so y =
Therefore Ĵ 7"" is a closed operator on the Banach space A, hence by
the Closed Graph Theorem, ^~ is continuous. Likewise so is *Pt

We are particularly interested in C*-algebras and in both the
commutative and noncommutative cases explicit descriptions of their
centraliser algebras may be given.

By the Gelfand Representation Theorem a commutative J3*-algebra
is isometrically isomorphic to the space C0(Z) of all continuous functions
vanishing at infinity on its carrier space, Z, a locally compact Hausdorίf
space.

PROPOSITION 2. For a locally compact Hausdorίf space Z we have
QC0(Z) = C(Z), the space of all bounded continuous functions on Z.

Proof. Certainly any h e C(Z) defines an element ^~h of QC0(Z)
by jThf=h f for fe C0(Z), for

/e C0(Z), h e C(Z) => hfe C0(Z)

and
Hfg) = (hf)g .

We clearly have \\^\\\ ^ II/HI— Suppose conversely we are given a
centraliser ^~ on C0(Z). Then for fge C0(Z) we have

(^f)g = JT(fg) = ̂ (gf) = (^f)/

so for z e Z taking any fe C0(Z) such that f(z) Φ 0 and defining h(z) —
^Ύ(z)/f(z) we have h(z) well defined independently of /.
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Being a quotient of continuous functions, h is continuous at z, for
each ze Z. And for any g e C0(Z)9

so

= hg =

Now by Proposition 1, Jf is a bounded operator, so taking fe C0(Z)
such that 0^ / ^ 1 and f(z) = 1 we have h(z) = ̂ 7(z) and | ̂ J(z) | ^

^ | |^"l l l l/IU = ll^r"ll so HΛIU^Iljrilandwesee&eC^).
Hence all ̂ ~ are of the form ^ and [| ̂ " || = H Λ IU. So QC0(Z) =

PROPOSITION 3. If A is a C*-algebra over H, principal identity E,
then Q(A) is isometrically isomorphic to

{Te^(H): T^ETE, TA{jATaA} .

Proof. Recall that the principal identity of a C*-algebra A is
defined to be the orthogonal projection of H onto M = HQ N where
N — {ξ G H: Aξ — 0}. Equivalently M is the closure of

Suppose given (^~, 6^) e Q(A), then J7~ is a bounded left centraliser.
Since A is a C*-algebra it has an approximate identity (Segal [6]),

(Zλ)λeΛ say, so \\Zλ\\ = l, and SZK-> S, ZλS~+ S for each SeA. So
^ " ( Z λ S ) - JT(S). But ^ ( ^ λ S ) = ^ ( ^ λ ) S - TλS where Γλ = ^~{ZX\
so ^ - ( S ) = limλ TλS and || Γλ || <£ | | ^ || || ̂ λ || = | | ^ " ||. For ξeMl9

ξ = Sη some SeA,ηeH so ^ " ( S ) ^ = limλ TλSη = limλ T λ | β Define
Tξ = limλ Γλf = ̂ {Syη, then Γ maps Mi into Mand || Γ | | | ̂  | | ^ " | | | | f ||
so \\τ\\s\\jr\\.

So extend T to a map of M into ikf and define T = 0 on i J 0 ^
so we have Γ = JS72TS7 and ^(S)η = limλ ΓλS57 = TSη. Therefore

= TS and | | j r | | : £ | | : Z Ί | . So \\JT\\ - || Γ| |.
We have

So £S(S) = ST for all SeA, and as for ^r',\\S'\\ = \\T\\. Since
TS, STeA for all Se A we have TA \J ATaA. Conversely given any
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T such that T = ETE and TA U ATc A, the maps S-+TS,S-+ST both
map A into itself and define a double centraliser of A. Hence result.

Denote the set {Te^(H): T = ETE, TA u A T c i } by I(A), the
idealiser of A in

Now let us suppose that B is a closed *-subalgebra of the JB*-algebra
A. We define # 0 = {̂  e A: Bx = xB = 0} and £ 0 0 = (J50)0. Then Boo is
a closed *~subalgebra of A containing B. Should it be necessary to
make explicit mention of the algebra A we will write BQ(A), etc.

Suppose two elements xl9 x2 of BQ0 give the same double centraliser
on B, so xxy = x2y and yx1 = yx2 for all yeB. Then (a^ — x2)B —
B(x1 — α?2) = 0 so a?i — x2 e Bo. But (α^ — x2)* e -Boo so we have

Ox - a?a)*(a?1 - x2) = 0

and hence ^ — x2 = 0. So α?x — a;2.

DEFINITION 2. A B*-algebra A is said to be a QW*-algebra if for
each closed *~subalgebra B of A all double centralisers of I? are given
by elements of Boo. We see that for each double centraliser the cor-
responding element of Boo is unique, and so we may briefly say that
A is QW* if and only if Q(B)aB00 for all closed *-subalgebras B.

We recall the definition of an ATF*-algebra (Kaplansky [4]).

DEFINITION 3. A J3*-algebra A is said to be an AW*-algebra if
( i ) every set of orthogonal projections in A has a least upper

bound in A.
(ii) every maximal commutative *-subalgebra B of A is generated

by its projections.

We also recall that a "FF*-algebra is a C*-algebra, over H say,
which is closed in the weak operator topology defined by seminorms
II T ||e,, = I <T£, ήy I for ξyηeH. Denote weak closure by ~w.

PROPOSITION 4. For A a C*-algebra, ί ( i ) c A Λ

Proof. By von Neumann's Double Commutant Theorem, A~w —
{Te &(H): T = ETE, TeA"} where as usual A" denotes the double
commutant of A.

Suppose Te I(A), Se A', Re A, then certainly T = S2Ή and
(ST - TS)R = S(TR) - Γ(SJB) = TRS - TRS = 0β So (SΓ - TS)# = 0
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and therefore ST = TSE. Since Γ e / ( 4 ) , S * 6 i ' we have S*T* -
T*S*E so TS = #ST. Thus TS = EST = ETSE = TSE = ST and so
TeA". Hence J(A)(=A".

THEOREM 1. For a B*-algebra A, W* => QW* => AW*.

If A is commutative, carrier space Z, then A is QW* <=>A is
AW* <=> Z is extremally disconnected.

Proof. If A is a W*-algebra and B is a closed *-subalgebra of
A with principal identity E, then since A is W* we note EeA, and
by Proposition 4, I(B) c I?-" c A~w = A. Also we easily see that J50 =
(I - E)A(I - E) so £ 0 0 = JS7AE7. Thus Q(B) c 5 0 0 by Proposition 3 and
hence A is QW*.

Suppose now that A is a commutative J5*-algebra, carrier space
Z, so by the Gelfand Representation Theorem A is isometrically iso-
morphic to C0(Z).

It is well known that A is AW* if and only if ^ i s an extremally
disconnected compact Hausdorff space.

Suppose A is QW*, then taking B — A we see that A has an
identity, so Z is compact Hausdorff.

Let U be any open dense subset of Z.
Then taking B = {fe C(Z):f= 0 on Z\U} = C0(U), B is a closed

*-ideal in A so Q(B) = C(U)(Z A.
So any continuous function / o n C7 is extendible to Z. Therefore

Z is extremally disconnected (see Gillman and Jerison [1], p. 96).
Now suppose that Z is an extremally disconnected compact Hausdorff

space, and suppose B is a closed *-subalgebra of A — C(Z).
Let (Zλ)λeΛ be the sets of constancy of B (see Rickart [5], Ch. 3,

§ 2), then these form an upper semicontinuous decomposition of Z, so
the space of these sets, Z' say, is a compact Hausdorff space and B
may be considered as a space of continuous functions on Zr.

B is self-adjoint and separates points of Zf, so by the Stone-
Weierstrass Theorem, either B consists of all continuous functions on
Zr, in which case B has an identity so Q{B) — B, or B consists of all
continuous functions on Zr vanishing at some point ZQ of Z'. So Q(B) — all
continuous functions on Zf\{Z0}.

Given any function on Z'\{Z0} it corresponds to a function / on
Z\Z0 - Y say.

Y is open, so 7 is a compact open subset of Z, and therefore Y
is extremally disconnected (Gillman and Jerison [1], p. 23). So there
exists an extension of / to Ϋ, and defining / = 0 on Z\ Ϋ we extend
/ to a continuons function on Z.
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Now since

= o on Y}

= {geC(Z):g = 0 on Ϋ]

and

BQ0 = {geC(Z):g = 0 on Z\Ϋ}

we therefore have Q(B)aB00.
So A is QW* and we have proved our theorem for A commutative.
Now let us return to the general case and suppose A to be QW*.
(i) Suppose (ea) is a set of orthogonal projections in A (so a Φ

β=>eaeβ = 0).

Let B — closed *-subalgebra of A generated by the βα's.
= closed linear hull of the ea's.

Now there exists a unique e e Boo such that ex — xe — x for all x e B
and e*, e2 e B0Q with

e*χ — xe* — x

e2x — χe2 — x for all xe B .

So e2 = e* — e and thus e is a projection.
Also eea — eae = ea all a, so β ̂  eα all α.
Now suppose / is a projection in A such that / ^ all ea. Then

/e« = β«/ = $a all α, so since all x e J5 are limits of linear combinations
of the e/s, we have fx — xf — x for all xe B.

Now

xyf= 0 all xeB^yfeB,

so for all ?/ e Bo,

fey = /0 = 0

l//e = 0 thus /β G J500 .

But

fex = fx = x

xfe •= xe — x

all xe B, so since e is unique, e = /β.
So ef — fe — e and e ^ f.

Hence e is a least upper bound in A for the ea'&.
(ii) Suppose B is a maximal commutative *-subalgebra of A. Then

by Proposition 5 below, B is QW*, thus since -B is commutative it
follows from the above result that B is AW*, and is a maximal com-
mutative *-subalgebra of itself and therefore generated by its projections.
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Thus we have both conditions for A to be AW*.

The obvious question of interest arising from this theorem is
whether or not the QW* and the AW* conditions are equivalent in
the noncommutative case, but so far we have not been able to settle
this problem.

We now prove some results for QW*-algebras similar to those
holding for W*- and AW*-algebras. We are indebted to the referee for
pointing out case (iv) of Proposition 5 as generalising cases (i) and (ii).

PROPOSITION 5. If A is a QW*~algebra then so also are the fol-
lowing closed *-subalgebras of A:

( i ) the centre Z of A,
(ii) any maximal commutative *-subalgebra of A,
(iii) the subalgebra eAe for any projection e in A,
(iv) S" for any subset S of A such that S* = S, where S" is

the double commutant of S in A.

Proof. We first prove (iv) from which (i) and (ii) follow immediately,
(iv) Suppose B is a closed *-subalgebra of S".
Since A is QW* any double centraliser on B is given by some

x e B0Q(A).

To prove x e B00(S"), since B0(S") c B0(A)9 we need only show x e S".
Let yeS',zeBaS", then

(xy — yx)z — x{yz) — y(xz) — xzy — xzy = 0
z(xy — yx) = (zx)y — (zy)x = yzx — yzx = 0

so xy — yx e B0(A).
Now

u e B0(A) => yuz = 0
zyu — yzu — 0 all z e B => yn e B0(A) ,

and likewise u e B0(A) =>uye BQ(A).
Therefore since x e B00(A), xyu = 0 and uxy = 0 for all u e B0(A),

so xy e B00(A), and likewise yx e B0Q(A). So (xy — yx)* e B00(A) and hence
xy — yx = 0 for all y e S'. Thus x e S" and the result follows.

( i ) We have Z = A', Z' = A so Z = Z", and clearly Z = £*, so
the result follows from (iv).

(ii) Suppose C is a maximal commutative *-subalgebra of A,
then by maximality C is closed and C = C, so C — C" and the result
follows from (iv).

(iii) Let B be a closed *-subalgebra of eAe, then since A is Q W*
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any double centraliser on B is given by some x e B00(A). Since B c eAe
we have y e B0(A) => ey, ye e B0(A) and x e BQ0(A) => exe e B00(A).

But for z e A we have

zexe — (zx)e = zx

exez — e(xz) — xz

so by the uniqueness of x in JB00(A) we have x = exe.
Thus xeeAe and so xeBQ0(eAe). Hence eAe is QW*.
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