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Let (X, S, μ) be a <τ-finite non-atomic measure space let N
be a real valued continuous convex even function defined on
the real line such that

(1) N(u) is nondecreasing f or u ^ 0,
(2) lim N(u)/u = oo,

ίί—»oo

(3) limN(u)/u = 0.

Let LN be the set of all real valued //-measurable functions

/ such that \ N(f)dμ < oo. It is known that if there exists

a constant k such that N(2u) ^ JcN(u) for all u ^ 0 then LN

is a linear space in fact, W is a i?-Space if a norm 11 11 is
defined by setting

= ίnf|l/C C>0, f

Denoting the 5-space (LN, || ||) by L& it is proposed to obtain
the necessary and sufficient conditions in order that L% may
be (1) Strictly Convex (2) Uniformly Convex.

The linear space LN admits another norm ||| \\\{N) known as the
Orlicz norm defined by setting

[ \fg\dμ

for such that \ M(\ g \)dμ £ 1, M being the function complementary to

N in the sense of Young. For a discussion of this class of Banach

spaces we refer to Mazur and Orlicz | 2 | . Convexity properties of the

Orlicz norm have been studied in Milnes [3].

The space L£ may be considered as a modulared linear space
defined in Nakano [4]. A nonnegative extended real valued function
m defined on a linear space is called a modular if

( i ) m(0) = 0;

(ii) for any xeL there exists ξ > 0 such that m(ξx) < oo

(iii) m(ζx) = 0 for all ζ > 0 implies x = 0
(iv) m(x) = sup m(ζx)

( v ) m is convex (i.e., α ^ O , / 3 ^ 0 , a + β = l,x,yeL imply
m(ax + βy) ̂  am{x) + βm{y)).
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The modulared linear space may be considered as a normed linear
space if a norm || || is defined by setting

(**) IMI = inf {1/f|f > 0 and m(ζx) S 1} .

We note that the linear space LN is a modulared space if

m(f) = N(f)dμ ,
JX

and the norm || || defined by (**) is the same as the norm defined in *.
In fact, the modulared space LN is a finite modulared space, meaning
that m(f) < oo, for all fεLN.

A Banach space B is said to be strictly convex if x, yeB, \\x\\ ~
II VII = II (χ + l/)/2 11 = 1 imply x —y. It is uniformly convex if to each
ε, 0 < ε ^ 2, there corresponds a δ(ε) > 0 such that conditions || a? || =
|| 2/1| = 1, | | a ? - y | | ^ ε imply that \\x + y\\ <2-δ(ε).

We shall start by characterizing the strict convexity of L£.

LEMMA 1. The modulared norm defined in (**) associated with
a finite modulared space is strictly convex if and only if m(x) =
m(y) = m{(x + y)/2)} = 1 imply x = y.

The proof is an easy consequence of the fact that in a finite
modulared space, m(x) = 1 if and only if | | # | | = 1 where || || is the
related modulared norm.

THEOREM. The Banach space L% is strictly convex if and only
if the N-function N is strictly convex i.e.,

for all real u, v such that u Φ v.

Proof. Let N be a strictly convex JV-function. Let f, geL% such
that

m{f) = m(g) = m

By definition of m it follows that

\lN(f)tN{9)] - N

whence the convexity of N together with the restrictions on /, and g
imply that f=g a.e. Thus by Lemma 1, L% is strictly convex.
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To prove the " only if " part, let L% be strictly convex. If possible
let N be not strictly convex so that there exist af b Ξ> 0 a Φ b such
that N{(a + b)/2) 1/2 [N(a) + N(b)]. The continuity of N together
with the condition iim N(u)/u = 0 imply that N is linear on the interval

[a, b] and a Φ 0, h £ 0. For % e [a, b] let JV"(w) = pu + q, where p and
g are reals.

Since ft is a nonatomic positive measure there exist pairwise dis-
joint measurable sets A, B, C of arbitrarily small measure such that

μ(A) = μ{B) = μ(C) .

Let us define functions f, g as follows. Let f(x) = a for a e i , f(x) = b
for a? e B, and /(a?) = 0 for all xgAu B. Let g(x) = 6 for a? e -A,
#(#) : α for XG B, and #(x) = 0 for x 0 A U B, and c/(x) = 0 for
x g A U B. Then

m(/) = f N(f)dμ = [V{a + b)

m(g) = JJSΓ(ff)d5/€ = [j)(α + 6)

and m(/) = m(gr) = m{(/ + gr)/2)}. By a suitable choice of A, B, C we
can assume that

^ < \ .

Now let Λ be a function on -X" defined by setting

h(x) - 0 if Xe C , / φ ) = ί if ίceC

where t in Much that N(t)μ(C) ^ 1 JRΓ. Let /, = A + /, and ^ =
h + g; sinm h A / 0 // Λ gt we obtain

! m(f) ~ (1 — JSΓ) + JSΓ = 1 .

Similarly ?n(//s) l t iincl further

Thus we have /,« /,:, u * /,; and m(/ t) = m(^) = m{(/x + ^/2)} = 1
however f± Φ glt Thuw /#ί t« not πtrictly convex^ a contradiction.

We next proceed to rhurnclrri/.c the uniform convexity of L%.

It is known [S| liinl in w inodularcd semiordered linear space, the"
modular norm is uniformly ronvox if and only if the associated norm
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iβ uniformly convex. The modulared linear spaces LN are modulared
semiordered linear spaces under the natural pointwise ordering, and
the above two norms are respectively the norms || | | ( 2 n and ||| | | | ( i n .

With this remark we conclude that the Theorem 8 in Milnes [3]
which characterizes the uniform convexity of the norm ||| \\\{N) also
characterizes the uniform convexity of the norm || | | ( J V >

I wish to thank Professor Victor L. Klee for his valuable sugges-
tions during the preparation of the manuscript, and the referee for his
suggestions and corrections which lead to a revision of the manuscript.
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