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Let E [J^~] be a locally convex space, 53 a saturated cover-
ing of E by bounded sets, and E' the topological dual of
E[J7~], Let ^Q be the topology on Er of uniform con-
vergence on sets of 3} and E" the topological dual of E'[J?%\.
We assume En has the natural topology ^Z—that of uniform
convergence on the equicontinuous sets of E!.

This article includes the following: (1) an intrinsic charac-
terization for a bounded convex set B of E of the closure
B of B in E" (2) an intrinsic characterization of the closure
E of E in Eff and (3) necessary and sufficient conditions that
E be E".

The spaces β. Let 3Jί be the class of all closed convex neigh-
borhoods1 of 0 in E\^~\ and Be 23. A filter g on ΰ is called
a convex filter if, for every Fe g, there exist M,NeSΰl and χ e i ?
such that Λf3 JV, JPID (ΛΓ + χ) Π -5, and (N + χ) Π B e g. Clearly if
g and @ are two convex filters on B, such that every set of g meets
every set of ©, then the least upper bound filter of g and © on B is
also convex. Furthermore:

LEMMA 1. For M, NeWl, if Mz>N, then there exists KeWl such
n a

that

Proof. If p and q are the distance functions of M and N, then
l/2(p + q) is the distance function of such a K.

THEOREM 1. A convex filter % on B is a maximal convex filter
on B if and only if, for every two closed convex bodies K and L of
E such that Kz^L, either KnBe% or B\Le%.

Proof. Assume g is maximal and let K and L be as above, and
o

let B\L0g. Let xeL and define a sequence {Mn} in 9Ji so that

K — xZΪMίZDMiiDL — x and Mnz>Mn+1 ZD Mn+1 Z)L — x (n ^ 1).

Then the filter © on B with base {(Mn + x) Π B \ n = 1, 2, 3, •} is

July 8, 1964 and in revised form January 11, 1965. Supported by
Science Foundation grant NSF G-24865.

1 The notation and definitions are principally those of Gottfried Kothe, Topolo-
Mιιt*nrβ Raume I, Springer-Verlag, Berlin, 1960.
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convex and KΠ 5 e © c g .

Conversely let % and © be two convex filters on B such that g
is strictly weaker than ©. Let Ge®, M, N e 3ft, and x e E such that
G i g , AΓDiSΓ, G I D ( M + a?)ΠS, and (iV + α>) Π-B e ®. T h e n neither
(M+ x)ΠB nor J5\(L + x) e g.

REMARKS 1. For every xeB, $iB(x) = { F n £ c J 3 | F a neighborhood
of x in E} is a maximal convex filter on B.

2. For a maximal convex filter g on B, there is a? e B such that
g = %$B(x) if and only if g has nonempty intersection.

LEMMA 2. Every maximal convex filter on B is a weak Cauchy
filter.

Proof. Let g be a maximal convex filter on B,

ueE', M={xeE\ \ux\ S 1/2} and N = {xe E | | ux \ ̂  1/4}.

Then M, NeWl and Mz)N. Since i? is weakly precompact, there exist
xu x2, — ,xneE such that UiU ( ^ + &«) =) 5, and so (Λf + a?ί) Π B e g
for some 1 ̂  i ^ w. For su, y e (ikf + 0?̂) Π B, we have \ux — uy\ ^ 1.

For a maximal convex filter g on ΰ and u e £", let g(%) denote
the limit of the restriction of u to B according to the filter g.

LEMMA 3. For every maximal convex filter g on B, the mapping
u —> ι$(u) on Er is linear and JTl® continuous.

Proof. Linearity is easily proved. Also let V be the polar set
of the absolutely convex hull of 2B, ueV, and i^eg such that
I ^# — g(w) I ̂  1/2 for every xe F. Then, for such an x, we have
I %(u) I ̂  I g(tt) - uα; I + I ux I S 1.

We shall denote by β — βB the set of all maximal convex filters
on B. By Lemma 3 there is a mapping πB from /SΛ into E" such that

gfa) for every g e /35 and w e Ef.

THEOREM 2. // either J^~ ΐs ίfce ^eαfc topology or B is convex,
π 5 is α one-to-one mapping of βB onto the ^~n-closure B of B

in E".

Proof. For g e /Ŝ , τr£(g) is in the weak closure of B in E". For
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given ul9 •• , ι t n e £ / and ε > 0, let Fίf •••, FnG% such t h a t

I utx - %(u{) I ^ ε (1 ^ i ^ n) and x G Γl?=i Ή . Then j gfa*) - ^ | ^ ε,

Also, if 5 is convex, TΓ ĝ) is in the ,^~%-closure B of 5 in Έ".
Suppose the contrary. Then there is a continuous real linear functional
w on Έ" and a real number r such that w (^(g)) < r a n d ^ ^ > r f° r

every £GJ?.
Assume first that E is a real vector space. Let u be the restriction

of w to Er, soueE. Let JFG g such that | m — %(u) \ <r ~ w (πB(%))
for every xe F. Then, for such an x, we have wx — ux — %(u) +
g(w) < r. But a? G JB.

Now let J? be a complex vector space. Then there is a complex
linear functional v on E" such that w = ίRv. Let u be the restriction
of v to ί? and Fe g such that | ux — g(w) | ^ r — w (^(g)) for every
xe F. Then for such an x we have wx = ίR (vx) = 3ΐ

) < r Again, we have a contradiction.

Thus πB(βB) c B if ^ " is the weak topology or 5 is convex.
On the other hand, if ze B, then :

ίβB(z) = { F n # c J 5 | F a neighborhood of z in E"[^\]} e βB

and π Λ(SSs(«)) = z. Let F be a neighborhood of z in 2?"[^~,J, and let

Z7 and TF be closed convex neighborhoods of 0 in E"[^n] such that

F and U+UaV-z. Let χ e (C7 + z) n ( - TF+ z) n 5, Λf =

, andiV= F n i 7 . Then AT, iVe 3JΪ and M3 JV, F^(ikf + χ) n B,

and (JV + χ) Π S = (W + χ) Π J5e S8Λ(J?). Thus 9S5(z) is convex.
o

Let K and L be closed convex bodies of E such that KuL. Let
^ e L, M = K — x, and N — L ~~ x. Either z e interior ikfoo + # in
which case K f] B = (M+ x) ΓΊ B -(ilί°° + x)Γ)Be fβB(z) or z $ N°° +
α? in which case E"\(N°° + #) is a neighborhood of z in i?" and so
B\L = [E"\(N°° + x)]ΠB G fβB(z). Thus 9S5(̂ ) G ̂ Λ .

Finally, let u G JE?', ε > 0, and Fe 9SB(z) such that | ux - %B(z)(u) \ g
ε/2 for every a? G F. Let F = {w e E" \ \ wu - zu \ ̂  ε/2}. Then, for
x G JF7 n V, we have | SSΛ(«)(w) — z^ | ^ | SSΛ(2)(%) — i6α? | + | ux — zu | ^ ε.
Therefore, πB$8B(z))(u) = OT for t6 e £"', and so πB($SB(z)) = z.

REMARK. Thus πB(βB(z)) = z for ^ G B and g = ^ ( ^ ( g ) ) for g e /3S.

COROLLARY 1. If either J7~ is the weak topology or B is convex,
then every maximal convex filter on B is a S^-Cauchy filter.

( ΌKOLLARY 2. / / either J7~ is the weak topology or B is convex,
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then for every g e βB and Me2W, there exist xeB such that
+ x)Γ\Be%.

Proof. Let Fe g such that F - Fez M and xeF.
For Λf e 2Jϊ and x e ΰ w e define:

vB(M, x) = {%eβB\(M + x)
μB{M, x) = {g e βB 17rΛ(g) e interior M°° + a;} .

For M,Nem and x,yeB, if 2e (if + a?) Π (N + y) Π B and
K=(M+x-z)Γi(N+y-z), then ι^(M, a?) n vB{N, y) = yΛ(JSΓf z) and
i"Λ(Λf, a?) Π μB(N, y) = /^(i£, 2). Hence the class of all sets of the form
vB{M9 x) and the class of all sets of the form μB(M, x) (for Me 2W and
ccei?) form bases of topologies, called the v- and μ-topologies respec-
tively, on βB.

THEOREM 3. // πB(βB)aB (in particular if either J?~ is the
weak topology or B is convex), then v- and μ-topologies coincide and
πB is a homeomorphism of βB onto B.

Proof. If πB(βB)c:B, then, for ikfeSΠi and xeB, we have
μB(M, x) c vB(M, x), and so the identity mapping of βB with the μ-
topology onto βB with the v-topology is continuous.

Also πB from βB with the v-topology onto B is continuous. Let
%eβB and V a neighborhood of πB(%) in En[^n}. Let U be a closed
convex neighborhood of 0 in E" such that U + UaV — πB(%), M =
Uf)E, and xe (U + πB(%)) ΓΊ B. Then (M + x) n B e §BΛ(τrΛ(S)) = g,
and so g e ̂ (ilί, a;). Also if ©e vB(ilf, a?), there is a neighborhood T7
of 7Γ£(@) such that W Π B = (M + x) Π B = (U + x) Π B so

πB(®) eWf]BdU+xc:U+ U + πB(%) c V .

Finally π^1 from B onto βB with the //-topology is continuous by
the definition of the sets μ.

COROLLARY 1. // either J?~ is the weak topology or B is convex,
then B is closed in E"[^~n] if and only if every maximal convex
filter on B has nonempty intersection.

COROLLARY 2. B is weakly compact if and only if every
maximal weakly convex filter on B has nonempty intersection.

2. The space η. Let SI denote the class of all convex sets of 23
and a — \JBeyι βB the topological union of the spaces βB. Let π be
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the continuous function from a into E"[^~n] defined by π(g) = π^g)
if g e βB. For A, B e Sί such that A c B, define a mapping gBΛ from
^ into βB by #^(g) - 85^(^(8)) (for %eβA). Then ^ β 4 = πB

ιπΛ and
consequently is a homeomorphism of βA into /5β. Also, if i c ΰ c C ,
then 0 ^ — g0B gBA.

THEOREM 4. Let A, B e Sί swc/& ίfeαέ A c 5 , cmcZ Zeί g e
®eβB. The following three conditions are equivalent;

(a) © = ftu(8);
(b) 7r(g) = π(©);
(c) Every set of © contains a set of g .

Proof. g = 3 3 ^ ( g ) ) , © = ^ ( Γ^©)), and
Hence (a) and (b) are equivalent. Also (b) implies (c): Given G e © there
is a neighborhood V of τr(©) = π(g) such that G = VΠBi)VnAe%.
Also (c) implies (b): If π(%) Φ τr(©), then 7r(g) and τr(©) have disjoint
neighborhoods V and FT in £"', and so TF Π A is a set of © contain-
ing no set of g .

COROLLARY. Let A and B e 21, g e /5 ,̂ α^ώ © e /9Λ. ΓAe following
three conditions are equivalent:

(a) 7Γ(g) = 7Γ(@).

(b) There exists Ce$l such that C~DA\JB and gϋΛ(%) = 0OB(®)

(c) T/^ere exists C e Sί α^cί ξ>e β0 such that CZDA\JB and every
set of !Q contains a set of g and a set of ©.

Now let R be the equivalence relation π(g) = π(@) on a, η the
quotient space a/R, p the canonical mapping of a onto 37, and σ the
mapping from 37 into E" such that π — σp.

THEOREM 5. σ is a homeomorphism of ΎJ onto the J?~n-closure E
of E in E".

Proof. We need only prove σ(η) = π(a) ZD E. Consider the dual
system (Er, Ey. Since every ueEr is uniformly continuous on E, the
topology induced on E by J7~n is admissible for this dual system. For
z e E, there is a closed absolutely convex set B e S3 such that | zu \ ̂  1
for every ueB°. Hence, zeB°° = the closure of B in any admissible
topology = the ^ - c l o s u r e B of B.

For B e §1, the weakest topology on βB for which every function
of the form g —> %(u) (for u e Er) is continuous will be called the
weak topology of βB. Clearly βB in the weak topology is homeomorphic
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with B in the topology induced on B by the weak-star topology of E".

THEOREM 6. The following three conditions are equivalent:

(a) E = E";
(b) B is weak-star compact for every J3 e SI
(c) βB is weakly compact for every i? e 51.

Proof. Clearly (b) and (c) are equivalent. Also (a) implies (b)
by the Alaoglu—Bourbaki theorem, for B e Si, the weak-star closure
of B in E" = E is weak-star compact but since ^~n is an admissible
topology for the dual systm (β\ Ey, this weak-star closure is B.
Finally (b) implies (a): regarding 53 as a total class of bounded subsets
of E, by the Mackey-Arens theorem J7~% is an admissible topology for
the dual system <£", E}, and so E" = E.

THEOREM 7. For B e SI, βB is weakly compact if and only if for
every maximal weakly-convex filter g on J5, there is a maximal J7~-
convex filter on B which is stronger than g .

Proof. Let βB be the space of all maximal weakly convex filters
on B and πB the homeomorphism of βw

B into E" with the weak-star
topology. In general B c πB(βB) = B c weak-star closure of B = πw

B{βl).
If βB is weakly compact, then πS(/3£) = πB(βB) = B. So, for g e βBf

e B and hence %$B(K(%)) e βB

 i s stronger than %.

Conversely, let g e βw

B and © e /9Λ stronger than %. Then 7r

πB(®)9 and so τrS(/SS) c π£(/95).

COROLLARY. JG = E" if and only if, for every B e SI
maximal weakly-convex filter g o^ B, ίfcere is α ^"-coTiί β^ filter on
B stronger than g .
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