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A continuous surjection π : X -> Y between topological
spaces is called "ductile" if, for each yeY and neighborhood
U of y there is a neighborhood V of y which contracts to y
through U in such a way that this contraction can be covered
by a homotopy of π~\V). It is shown, in this note, that if
7r : X —> Y is ductile and Y is paracompact then the inclusion
of the image π*C*(X) of the singular chain complex of X in
the singular chain complex C*(Y) of Y induces an isomorphism
in homology. Thus H*(Y) can be computed from those singular
simplices of Y which are images of singular simplices of X.

This result does not hold, in general, when π is not ductile. This
question was brought to our attention (for a specific case) by Klingen-
berg who plans to use our result in a study of geodesies on a Rieman-
nian manifold. We shall now rephrase the condition that a map be
ductile in a more convenient language.

Let ^//Γbe the category whose objects are surjective maps π : X—> Y
between topological spaces and whose morphisms are commutative
diagrams

X —

4
Y

-*X'

\*
> Y'

of continuous maps (where π, πf e ^f). This contains an analogue of
homotopy, that is a commutative diagram

I x I >X'

\π x 1 \πr

Y x I > Y'

For 7Γ: J5Γ—> Y and 4 c 7 w e let πA denote the restriction π~:(A)—> A
Of 7Γ.

We will say that π : X—> Y (in ^ ) is ductile if, for each point
ye Y and neighborhood U of y, there is a neighborhood V of y with
V aU such that the inclusion πv —> ππ is homotopic (in ^/ί) to a map
into π[y}. (Thus V contracts, through U, to {y} and this contraction
is covered by a homotopy of π~\V).)
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Most nice mappings are ductile. The following are all examples
of ductile maps :

(a) Simplicial maps.
(b) Let Ad X both be ANR's (compact metric) and π the map

of identifying A to a point.
(c) Y = Yx U F2 where Yίf Y2 Y, Π Y2 are ANR's, X = Y, + Y2

(disjoint union) and where π is the natural map.
(d) π is the map of a differentiate manifold X onto its orbit

space under some compact Lie group acting differentiably on X (see
[1, Chapter VIII, 3.8]). According to Smale this also holds when X is
an infinite dimensional manifold.

(e) Let M be a compact Riemannian manifold and X the space
of mappings S1 —• M in the uniform metric. Regarding S1 as the unit
circle in the complex plane, S1 acts on X by {zf){z') — f{zzf). Let Y
be the orbit space of this action. According to Svarc [4], this is
ductile. According to Smale it falls under the infinite dimensional
case of example (d). It is this example that Klingenberg uses in
studying geodesies on M.

THEOREM. Let π he a ductile map of the space X onto the para-
compact space Y. Then the inclusion π*C*(X)aC*(Y) of chain
complexes induces an isomorphism in homology.

For the proof, it is convenient to introduce some notation. For
π:X-+Y in ^T, let C*(π) = π*C*(X), Hp(π) = H9(C*(π)), C*(τr) =
Horn (C*(ττ), Z), and Hp(π) = Hp(C*(π)). These are functors on ^f.
It is clear that homotopies in ^y£ induce chain homotopies, and there-
fore that homotopic maps π —> π' induce identical homomorphisms

Hp(π) — Hp(π') and Hp(π') — H*(π) .

Note that, as a subcomplex of C*(Y)f C*(π) admits the operation
of subdivision, and that standard methods show that this operation
induces an isomorphism in homology.

Also note that if π is ductile, then, with yeVaU as in the
definition of ductile, the restriction Hp(ππ) —* Hp(πv) factors through
Hp(π{y}) — Hp(y) and hence is trivial for p Φ 0 and has image Z for
p — 0. (Hp(π) —> Hp(π{y}) is clearly surjective). Thus, when π is
ductile, the natural map

lim H%ππ) - H>(πw) = H'(y) = J^ ^

is an isomorphism, where U ranges over the neighborhoods of y.
Now, for π: X-+ Y fixed, let S* be the (differential) presheaf on
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Y defined by S*(U) = C*{ππ) = YLom{n^C^~\U)), Z). S* clearly
satisfies the axiom (F2) of Godement [2]. Let ^ * be the sheaf
generated by S*. The kernel Sϊ(Y) of the natural map C*(π) =
S*(Y) —> S^*(Y) consists of those cochains with empty support (that
is, which vanish on "small" simplices of C*(τr)).

LEMMA, H*(S$(Y)) = 0.

Proof. For an open covering U of Y let C*(π) be the subcomplex
of C*(π) generated by those singular simplices which are contained in
some member of U. A standard argument using subdivision shows
that H*(Cι}(π)) -> H*{C*(π)) is an isomorphism. If Cfτ(τr) = Horn (C*(τr),
Z) it follows that H*(C*(π)) — H*(C%(π)) is an isomorphism0 Thus if
K*χ = ker {C*(ττ) -> C*(ττ)} then £P(i f *) = 0. But clearly S0*(F) =
U u ^ u = l ί m κΐv T h u s #*($?( Γ)) = £P(lim K*x) = lim H*(ίΓ5) = 0.

Now suppose that Y" is paracompact. Then by [2; 3,9.1, p. 159],, j

the sequence

0 -> S0*(Γ) -> S*(Y) -> ^ * ( Γ ) -> 0

is exact, so that H*(π) = H*(S*(Y)) **
Since each Sp is an S°-module? it follows that each 6^v is an

^°-module. ^ ° is just the ordinary singular cochain sheaf of Y in
degree zero and hence it is flabby. Since Y is paracompact it follows
that each ^ is soft.

Let ^ * ( ^ * ) be the derived sheaf of &**\ By standard facts, the
stalk of this sheaf at ye Y is < § r * ( ^ * ) y = limH*(S*(U)) = limH*(ππ)

veu yeu

(U ranging over the neighborhoods of y). We have seen that, when
π is ductile, this is identified with H*(y). Thus, when π is ductile,
6^* is a resolution of the constant sheaf ZΛ

If ^ * is the ordinary singular sheaf of Y, the diagram

H*(C*(Y))-+H*(S*(Y)) = ff*(C*(π))

1 1

commutes (note that ^f * = ^ * when π is the identity)^ If Y is
paracompact, the vertical maps are isomorphisms and so is the lower
map when π is ductile (see [2, 406o2? po 178]).

We wish to obtain this isomorphism on the homology level. Note
that C*(Y)/C*(π) is a free chain complex (generated by those singular
simplices not in the image of π)o We wish to show that
H*(C*(Y)/C*(π)) = 0, under the hypotheses of the theorem. We know
that the cohomology of this chain complex is trivial. Thus, by the
universal coefficient theorem, it suffices to show that, for any abelian
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group A, Horn {A, Z) = 0 = Ext (A, Z) implies that A = 0. This is
proved in [3, Theorem 8.5] and completes the proof of our theorem.

In conclusion we give an example of a map π X —* Y which is
not ductile even though each point yeY has a neighborhood U such
that π~\U) can be deformed into π~\y). Indeed the conclusion of the
theorem does not hold for this example.

Let YΊ be the interval [0,1] on the x-axis of the x — y plane and
for n > 1 let Yn be the upper semicircle (y ^ 0) with radius 1/n and
center at (1/n, 0). Let Y = U~=i Y% a n ( i l e t X be the disjoint union
of the Yn with π : X—> Y the natural map.
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