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The homomorphisms ¢ of the group algebra L'(F') into the
algebra M(G) of measures, where /' and G are locally compact
groups, has been completely determined when both groups are
abelian by P. J. Cchen, and when G is compact and the
homomorphism is norm decreasing and order-preserving by
Glicksberg. In this paper the structure of norm decreasing
homomorphisms ¢ is determined for arbitrary locally compact
F and G. Asan application the special structure of all norm
decreasing monomerphisms is determined, along with the
rather elegant structure of all norm decreasing homomorphisms
mapping L'(F") onto LYG).

The analysis is effected by finding all multiplicative sub-
groups of the unit ball of measures on a locally compact
group for, as we show, each ¢ extends to a norm decreasing
homomorphism ¢ : M(F')—M(G), and is determined by the image
under ¢ of the group of point masses on G, a multiplicative
subgroup of the unit ball in M(G).

This paper completes a study of norm decreasing homomorphisms
on group algebras initiated by Glicksberg in [4] and [5]. If G is a
locally compact group we will denote its group algebra by LYG) and
its convolution algebra of bounded regular Borel measures by M(G).
We present a complete structural analysis of the subgroups of the
unit ball in M(G), and a structure theory classifying all norm decreasing
homomorphisms @: L'(F') — M(G) where F and G are locally compact
groups. As an application we determine the special structure of all
monomorphisms ¢ mapping LYF') into M(G) and all norm decreasing
homomorphisms which map L'(F') onto LYG).

Let C(G) be the sup norm algebra of all continuous complex valued
functions on G which vanish at infinity, and recall that Cy(G)* = M(G).
If #e M(G) its support s(y) is defined so that wxes(y) <~ for each
neighborhood U of x there is some + ¢ C{G), vanishing outside of U,
with {¢, ¥> + 0. Then s(¢) is a Borel set. If " is a subset in M(G)
we define supp (') = U{s{p): #€'}. The convolution of y, »e M(G)
is given as an element of Cy(G)* by defining

gy = | [ vistiaps) v
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for all v e C(G). If M(G) is given the total variation norm it becomes
a Banach algebra under this multiplication.

We first show that if ¢, » e M(G) then

(1) [laeen]l = (1l IIN = s(pexn) = (s()s(V)~

(2) [lpan] =]l [N =T gen]| =[]

These facts were first pointed out, in somewhat less general form, by
Wendel [11] and Glicksberg [4]. These results suffice for the analysis
of the subgroups of the unit ball in M(G).

In order to determine the norm decreasing homomorphisms ¢: L*(F')—
M(G) we use an important observation that such a map always extends
to a norm decreasing homomorphism @: M(F') — M(G) which is con-
tinuous on norm bounded sets as a mapping of (M(F'), (so)) into
(M(G), (6)). Here (0) is the usual weak * topology on M(G), and (so)
is the strong operator topology on M(F') gotten by letting M(F') act by
left convolution on the ideal L*(F') < M(F').

The author is greatly indebtted to the earlier work of Glicksberg
presented in [4], [5]. He is also pleased to acknowledge Professor
Glicksberg’s helpful commentary in private correspondence. It will be
clear to the reader familiar with [4] that the proof of the fundamental
relation || N[l = || pll- I M| = [ x| = | £ [*| N ]| is a simple adaptation
of a Glicksberg theorem dealing with compact groups. The simpler
proof given here was suggested by Glicksberg.

1. Preliminaries. Throughout this paper we will find it con-

venient to write convergence of a net {x;} to a point « in a topological

space (X, 7) as x,-—(—r)—»x or x eﬁr)—x,-, interchangeably. To avoid con-

fusion in discussing homomorphisms we will use the terms homomorphism
(epimorphism, monomorphism) for into (onto, 1:1) homomorphisms; we
reserve the term isomorphism for 1:1 onto homomorphisms.

Most measure theoretic notions are taken from Halmos [3], includ-
ing definition of Baire and Borel sets. In the following discussion let
B = B(G) (B, = B(G®)) be the collection of Borel (Baire) sets in G. If
a funection f is defined on G and if H is a o-ring of sets in G, we say
that f is H measurable on all H sets of G if y,f is H measurable for
each set Ec H (Y, = characteristic function of E). It is clear that
B, meagurability on B, sets implies B measurability on B sets in G.

If pe M(G) define its Baire contraction ¢’ by restricting its domain
of definition to be B(G). A regular Borel measure is uniquely de-
termined by its Baire contraction (see [3], 54. D). If Ee B(G) it must
be o-bounded, and hence there is a Baire set A D FE; this applies in
particular to s(y¢) where pre M(G). If Eec B and f is B measurable on

G, we let g fdp denote the integral S AzSf .
B (23
In applying the Fubini theorem, Borel functions have rather



NORM DECREASING HOMOMORPHISMS OF GROUP ALGEBRAS 1189

pathological properties when compared to those of Baire functions.
These difficulties arise from the fact that the product o-ring B, X B, =
B{(G x G), while we only know B, X B,C B X BC B(G x G) for the
corresponding Borel sets. If f is B, measurable on G and if 4, Be B,,
then the function ¥ ,.x(s, t)f(st) is B, X B, measurable on G x G (hence
B x B measurable) and we can apply Fubini to the convolution-like
integral

.

() |, Zaxals, 0L O X N6, ) -

If f is B measurable, the best we can say is that y,.x(s, t)f(st) is
B(G x G) measurable, but this does not give the B x B measurability
required to make (x) well defined. To avoid these difficulties we will
rely on the following well known observations.

(R1) If f is bounded and B, measurable, and if FE, F'e B,, then
Anxs(8, 1) f(st) is B,x B, measurable on G x G.

(R2) If f is bounded and B, measurable, and if g, xe M(G), let
us choose any sets K, Fe B, such that £ Ds{(¢), FOs(\). Then

[, f@dmer@ = | e s 05608 x 16, 1)

(R3) If ¢re M(G) there exists a unimodular function f, which is
B, measurable on B, sets in G, such that g = f.|{¢|. Thus if Fe B,

wE) = | 1:@dp® = | 161,00 116) -

Notice that 7(t) = Sq/r(st)d/x(s) is in C(G) if e CyGF), and all
CyG) functions are B, measurable on G, so the definition of convolution
is meaningful for g, A e M(G). Convolution is actually independent of
the order of iteration of the integrals used to define it, in fact the
above remarks show that

S o U Wstmms)]dk(t) = S Lone(s, D (stydpe X N, t)
= SGHG AN |aps)

if E, Fe B, are such that E Ds(y), F Ds(\).

If G is a locally compact group and if @ C G we let &, =1{0,: v € Q}
where 0, is the point mass at # for x€G. Let co[X] be the convex
span of a set X< M(G) and if v is a vector space topology on M(G),
denote the (v)-closed convex span of X as colX :v]. We will need the
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following lemmas about the (o) and (so) topologies on M(G) (see intro-
duction).

Lemma 1.1.1. If ‘ur(—s—ol»ﬂ with [l E M < o wn M(F), and
iof W is right untformly continuous and bounded on F, then we have

gy Y — Lt Y.

Proof. Since + is uniformly continuous, there exists fe LF)
corresponding to €>0 such that || f|] =1 and ‘ S Jr(st) f(t)dt — q/f(s)i <e/M

for all se F.. Then we have |{g;*f, > — <;jj, by < e for jed and
likewise for g, so that |{gt;, > — ¢, ¥>| < 3e for § = j..

Lemma 1.1.2. If @ is a compact set in locally compact group G,
and if S is the circle group, then colS&,:s0] = colS,:0] =
e M(G):|lpll =1, s(p) CQ}, and on these sets the (o) and (so0)
topologies coincide.

Proof. Clearly S&, is both (o) and (so) compact, thus from [2,
p. 511] we see that co[S &, : so] is compact in the (so) topology, as is
¢o]S &, :0]in the (o) topology. On the unit ball the identity 5 : (M(G), so)—
(M(G), o) is continuous by 1.1.1, so co[S &, : so] is (0) compact and hence
must contain co[S&,:0]. Since @ is compact it is known that
colS&, 0]l ={pe M@G):|lpll =1, s(u)C Q). But peco[S&,:so]=
s()cQ and |jp|l =1, which gives the reverse containment. It is
obvious that the topologies are the same on these compact sets, once
they are known to coincide.

LEMMA 1.1.8. If G is a locally compact group, colS &y:so] is
the unit ball in M(G) if S is the circle group.

Proof. Let pe M(G), ||¢t]] =1, and let K, be compacta such that
K,.,D>K, and U, K, Ds(tt). Then g, = p| K,e M(G) is such that

norm

el =1, p,eceolS&Ex, 1s0], and g, — . Thus ¢ is in the norm
closure of UJ7.,co[S &, :s0], which lies within co[.S &% : so].

LeMMA 1.1.4. On the unit ball in M(G), convolution ts a jointly
strong operator continuous operation.

Proof. Let pj—(i())—»/x and X\, —(s—o)»)» in the unit ball. If fe LYG),
then because || ;|| = 1 for all jeJ we have || ;N xf — pxhxf]|| =
Wtk f) — prix k) || + || e Ovx f) — prads fl] = |[ M f — Ax ]| +
[F 25 v f) — pre(x f) || — 0.

LEMMA 1.1.5. If G s a locally compact group, the unit ball in
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LY{G) < M(G) is (so) dense in the unit ball in M(G);, in particular,
LYG) 1s (so0) dense in M(G).

Proof. Clearly there exists a left approximate identity {e;} of
norm one in LYG). If pre M(G) then prxe, e LNG) and || pxe; || < || pe]l;
furthermore, if fe LYG) we have

o f — (reyxfil = || pxf — px(egxf) || — 0.

2, Idempotent measures of norm one. 1f G is a locally com-
pact group and KC G is a compact subgroup, define m,e M(G) to be
the normalized Haar measure on K, so that

Sy vy = | _r(s)dmels)

for v e C(G). Let K" be the set of all continuous unimodular multi-
plicative complex valued functions on K, and if Se K" let Sm, denote
the Haar measure on K weighted with the function S. Then Amy, is
an idempotent of norm one in M{G); it is our purpose to show that
these are the only idempotent measures of norm one in M(G).

THEOREM 2.1.1. Let G be a locally compact group. Then if
U, N e M(G) are such that || pesn || = || ¢£]]-]| M| 9t follows that s(pes)) ==
(s(t)s(\))~, the closure in G of s{pis(\j.

Proof. 1t is sufficient to consider the case || g¢|| =||n]|| = 1.
Clearly (s(ze)s(\))~ Ds{pxn). If this inclugion is proper we can find a
compact Baire set U which is such that (int U) N (s(p)s(\)~ # @,
while at the same time UnNs(uxx) = . Let K, Fe B{(G) be such
that E Ds(y), F'DOs(\), and define V = {(s,s7u):uec U,sc B} C G x G}
notice that Ve B, x B, and is such that y,(s, t} = yp(st) for sc K,
te G, thus

S(,mmv W(st)dpe x M, ¢)

=2 v ande x Ms, 1
= wolstyvtiz x M, 1)
_ LXU(w)q/p(x)d/x*X(x) :

Given ¢ > 0, there is a function € Cy(G) such that ||+ ||, =1 and
[{esn, v>] >1—e. If Vis any Baire set in G x G, then
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1 e <uin | = || Zaerls, Or0et)dp x G5, ) |

= LF Yr(st)dy x (s, t)l
(*)

_ S(  lstdie x Ms, )
+ S w(st)de x (s, t)] :
(EXF)NV

For V as above, the right hand side of () consists of the single term

IS(EXF)\V vistdpe X M, t)l = S

B CIIRINIOD

(BXF)

gg d|p|><|>v|—g dlp] x|
EXF nv

(EXF)

:1~S dlp] % .
(EXF)OV

But from our definition of U it is clear that S dlp| xX|n]=0>0,

(EXF)NV
and thus for all ¢ >0 we get 1 — ¢ =<1 — 4, a contradiction.

THEOREM 2.1.2. If G is a locally compact group and of ¢, n € M(G)
are measures such that || pxn| = [ tell-lIN]], then |pxX| = |]|*|N].

Proof. Again it suffices to consider the case || || = |[»]|| = 1. If
F D s(y) is a Baire set, it is o-bounded and from the Radon-Nikodym
theorem we know that there is a Baire measurable funection f, on F
such that u(¥F) = g Le(@) fu(z)d | ¢ ] (x) for all Ee B(G) such that EC F.

clearly |fu(x)| =1 |¢]-a.e. on F; we define a new function

Su®) if xe F and |fux)]| =1

oul®) = {1 for all other 2€G .

Then p, is a unimodular function on G Baire measurable on Baire
sets in G.

We will show | prxX| < | ¢#|x|{N]. Since these are positive measures,
both of norm one (since || g*xn|l = || ¢£ll+]|»]] for any positive measures
!, ve M(@)), our result must follow. If 4 e C(G) and 4 = 0, then

{ e, o = SG%‘“‘*W

— SG [SG ___p“i iz) dy(s)]dx(t)

L[SGWSt)—%%%QdIﬂ\(s)]d\M ®) .

I
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Now the last integral is positive and the integrand is a unimodular
multiple of +(st), so it must be less than or equal to

L vendi e @a o= apisi, v

The following lemma is given in Loynes [6] and Pym [8], and is also
a simple consequence of 2.1.1 and 2.1.2.

ProposiTioN 2.1.3. If G is a locally compact group and if ¢ e M(G)
is a positive idempotent of norm one, then there is a compact subgroup
K G such that ¢ = mg.

We can.now prove the main assertion of this section.

THEOREM 2.1.4. If G is a locally compact group and pe M(G)
8 an tdempotent of norm one, then there is a compact subgroup
Kc G and a function pe K" such that pt = pmyg.

Proof. Write ¢t = p|tt| where ¢ is a unimodular function on G,
Baire measurable on Baire sets in G. From 2.1.2 we see that | ¢| is
a positive idempotent of norm one, so that | ¢#| = m, for some compact
subgroup K< G from 2.1.3.

Now 0 is a bounded Borel measurable function on K since B(K) =
{ENK:Eec B(G)}, so the function o » p(t) = S o(s7t)p(s)dm(s) is
K

continuous on K (we are taking = as the convolution of two functions
on K here). If 4ve C(G) and if Fe B(G) is such that FDs(u) = K,
we have

[ @oto) dmate) = o, w5 = e, 9
= | [}, vevowanss Joam.s)
= [|_ vt tameo |peangs
= SGXG Arxi(s, DO(TE) P ()0(8) Y xxc(s, LM X M(s, T)
Clearly v(t)0(s)lxxx(s, t) is B X B measurable and a slight modification

of R1 gives the B, X B, measurability of o(s™t))r.»(s,t) on G X G.
Thus Fubini applies and we get

| Zaex(s, i 0(s)o(st)dmc X m(s,
[ e@pots—tamts) [y@ame
| ¥ = ot)dm) ,
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so o is | p|-a.e. identical to a continuous function on K. Taking p to
be continuous on K, it is clear that (s,t) — p(st) is continuous on
K x K. But we can apply the argument of 2.1.2:

1= pepll =] ﬁ;%gf*—,f)tldmuw]dwuw

_ SKHK _ﬂt_zsﬁt()_t)— de(S)]dmx(t) ,

which means that o is a multiplicative function on K.

3. Subgroups of the unit ball in a measure algebra. In this
section we consider a locally compaet group G and let /" be a subgroup
in the unit ball of M(G). We will denote this unit ball by %, and
refer to the weak * topology on M(G) as the (¢) topology. Given I”
we denote H, = supp (/") = U{s(p): perl}.

Lemma 3.1.1. Both H, and its closure in G are subgroups of G,
and if the unit of I" is denoted © (i = pmyg for some compact subgroup
Kc G and some pe K"), then K is a wmormal subgroup of both H,
and tts closure. Furthermore, iof pel” then s(p) is a single coset of
the group K wn H,.

Proof. If pel’ then s() is a union of right (or of left) cosets
of K because ixp = pxi = pt= (s(1)s(¢))” = s(1t)- K = K-s(pt) = s(p)
from 2.1.1. If pe I then s(p™) = s{)~". In fact, if x e s(p), yes(p™)
then oy = ke (s()s(™)" = s(uxp™) =K, so that 2" =yk e s(u )K=
s(¢™"), and vice versa.

If g, es(y), g.€ (") we have the relations

(%) K = 5() = (s(s(p)” Ds(s(pr™) D 9:.K*¢. O 9.Kg,
(%) K = s(t) = (s(p)s(pr™))~ D s(ys(pe™) © Kg,9.K D {g.9:} .

Thus s(y¢) is a single coset of K; otherwise we could find g, g, s(2)
with g, ¢ Kg,, and this would = ¢,¢9,7'¢ K. But g, € s(p)™" = s(t™*) and
(xx¥) = g,9,7'€ K, a contradiction. We see now that all supports are
compact and hence s(p)s(\) = s(px\) for all g, xve I,

Clearly H, is a subgroup of G since s(t*X\) = s(#)s(A) and s(p)~* =
s(¢#™); hence its closure is also a subgroup in G. We get normality
of K by considering ge H, and taking any pel’ such that ge s(y).
Then if we take g, =g, g, = g€ s(¢™) in (%), we get KD gKg~.

The following theorem gives the structure of a subgroup I'; it
gives only a necessary condition on the structure of a collection of
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measures /' in the unit ball of M(G) in order that I” be a subgroup.
Necessary and sufficient conditions will be given later.

ProrosiTioN 3.1.2. If I" is a subgroup of =y for locally compact
group G, let © = pmy be its unit and let H, =supp (/). Then there
exists a subgroup 2cC S x @G, with the property

Hy={geG: (a,g)c 2 for some || =1},

such that I = {ad,xomg : (@, g) € Q}.

REMARK. Here S is the circle group and S X G is the usual
product group. In 2.1.4 we have already shown that the unit is ¢ = pm,
where K is normal in H, and pe K".

Proof. Let p, be a unimodular function on G, Baire measurable
on Baire sets in G, such that p = p.|p| for pel'. If ges(y) we
have shown that s{y¢t) = gK and we know that o, is determined | ¢ |-a.e.
on s(p). But if s(p) = gK, then |p]| = d,xmg; in fact, we have
pxt = g, which = | g|x|i| = |p|xmg = | ], and this gives | pt| =0, xmx
since || || = 1. We first show that p, is | zt|-a.e. identical to a con-
tinuous function on s(y), or equivalently that p.’(x) = p.(gx) is mx-a.e.
equal to a continuous function on K. We have

|, e = | wlaostand
K
for e C{(G), while gt = 4% p =
[, vde={ [{ wetowdnss |auw
= _[|_vGatro@ougtdmas) [amxt .
K K
For ge H,, the map 7, :s— gsg" is an automorphism of K such that
m(w,B) = mg(E) for Borel sets FC K; thus if we define 7,*B(s) =

B(gsg™) for se K, ge H, and Bec K", then 7#,*8¢ K" and the last
expression above is

=[] v(gstim, o(s)pugtyame(o) Jamctt
= _ven[ 7 00056 0dmee) |imett
=|_v(@dlm, 0 * poltydme(t)

where « gives the convolution of two funections on K rather than
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functions on G. Since 7 ,*p and p.’ are bounded and B(K) measurable
functions on K, their convolution on K is a continuous funection, and
the above equalities = 0, = 7,*0 * p.° Mm-a.e. on K.

Take each function p. to be continuous on s(¢) for pel’. Then
we have 0.(2)0\(y) = pua(ry) for all (x,y)es(y) x s(») in G X G,
because

1= SGdI#*M = Sg ,o,ula(z)

- st) [Ssu\) %d [ 2] (3)]d fel @),

dpxn(z)

and since the last integrand is continuous and unimodular. If se K
and ges(y) for e l”, then we have

0.(8) = Pu(gs) = 0ui(98) = Pu(g)0i(s)
= pw(g)p(s) = ¢,°0(8)

which means that p,° = ¢,-0 on K where ¢, = p.(g9) is a scalar of
modulus one. Clearly ¢ = p.(g)-(0,xpomg) if ges(p); ie. if ges(y),
then for some scalar a with |a| =1 we have ¢t = ad,*pmy.

Let  ={(a,9)e S X G: ad,xpmge I'}. We have shown that for
each ge H, we can find a scalar |a| = 1 such that («, g)e 2, so we
only have to show that

(“1591 * me) * (0(2592 * (OmK) = alazaglqz * me .

Since the left side is in I we get (aa,, ¢:9.)€ 2, and this will give
the group property. But a0, xomge " and ¢ = pmg is the unit of I
hence

alégl * OM g% (00, % OM ) = 00, * A, % OMg = OO0, 4, % OM g

as required. Clearly I' = {ad, = omg : («, g) € £}.

COROLLARY 8.1.3. If p#,nel” we have s(¢) = s(\) = 1 = an for
some scalar a with |a| = 1,

Proof. 1If s(¢) = s(\) = gK then there are scalars «, 8 of unit
modulus such that ¢ = ad,xpomx and N = GBI, * pmg.

COROLLARY 3.1.4. If Si={ai: |a| =1} and if I'NSi={i},
then for p,nel’ we have pt = N whenever s(tt) = s(\).

PropositioN 3.1.5. If G is a locally compact group and I” is a
subgroup of X, let us write its unit as ¢ = pmg, where pc K", and
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let H, = supp (/). Then K, = {xe K: p(x) = 1} is a compact subgroup
of G which is normal in both K and H,.

Proof. If pel and p, is the unimodular function, Baire measur-
able on Baire sets in G, such that ¢ = p,| |, then we know that o,
is a translate of p to s(¢), and we also know that 0.(2)0,(¥) = Opa(2y)
for all zes(y), yes(\), from 3.1.2, Obviously K, is normal in K;
normality in H, is more troublesome.

If ye K,, xe H,, then xyx—e K and if xzes(y) we get

plryr™) = pu@)p (Yo (@) = pu(x)-1- 0. (x7)
= Ouu(za™) = p(e) =1,
which = xyx—'e K,.

ProrosiTioN 3.1.6. Let G be a locally compact group, let H, be
an arbitrary subgroup, let K> K, be a pair of compact subgroups of
G which lie within H, and are normal therein, and assume that pe K*
is a function such that K, = Ker p. Then we have omgx0,%omx =

o,xomg for all ge Hy— K is central in H, mod K, (i.e. K/K, is a
central subgroup of H/K,).

Proof. If K is central in H, mod K, and + € C,(G), then
Comexdysome, vy = [ [ | wisatio@otimc(s) |a1o,)e) |amat)
= | [, #eaonms s [am) .

But sg = gs mod K,, so that sg = gsk for some ke K, and the last
expression becomes

f

EG[L “JP(QSI’C??)P(st)dmx(s)]dmx(t)
SGUG "/”(QSt)P(St)de(S)]de(t)

I

SG P(g8)0(8)dmc(s) = (B, % oM, > ,

since (omg)’ = pmg.
If, conversely, omgx0,%xpmyg = 0,%xpmg for all ge H, we show
that K is central in H, mod K, as follows. Let

Xng

I —
Y AU, N K)

where {U;: je J} is a basis of compact symmetric neighborhoods of
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the unit in G, and make {y;: jeJ} a net of functions in L'(G) under
the obvious partial ordering. Then we have

X j(s)
5 mge(U;)
Xov,(98)
& me(U;)

Vi(gs)o(s)dm(s)

1= o) — | o(s)dm.c(s)

o(s)dm x(s)

[|_i69t06) 0ty dma(s) |ama(t)

K| K

S
X
- SK Y SK Pid[ oM+ 3, % O]
|
S

i » (gst
_SK Xov (950) o gsg~z)p(t)de(s)]de(t)

wle m(U)
B
= LL%p(gsa*)p(t)de(s)]de@) ,

But p is uniformly continuous on K and hence, given ¢ > 0 there is
an index j(¢) such that 7 > j(¢) in the partial ordering of J=
[p®t) — o) | < e if tet’'U;. Hence if j > j(€) we get: A ,(8t) # 0=
tes™U;, which = |po(t) — p(s™) | < e. Some trivial computations then
show that the last integral is always within € of the following expression
it 5> j(e).

|, o(asg)o(sdme(s) = | _olgsg~)p@idma(s)

But s — p(gsg™) is a funection in K", and from the known orthogonality
of one dimensional representations of K, this integral can be nonzero
< 0(gsg™) = p(s) for all se K. This means that gs = sg mod K, for
all se K, ge H,.

COROLLARY 3.1.7. If G is a locally compact group and I' is «
subgroup of Xy, let Hy, = supp ('), and let us write the unit of I"
as 1 = omg as wn 2.1.4, where KC G 4s a compact subgroup and
oe K". Then if K, = Ker p, K must be central in H, mod K,.

Proof. From 3.1.5 we know that K, must be normal in H,.
Furthermore, ¢t = pft—=0M % 0,% oM =0,% pmg for all g e H, (see 3.1.2).

THEOREM 3.1.8. (Structure Theorem for Subgroups). Let G be
locally compact group and let I' be a subgroup of Xy With unit 4.
Then we have
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(1) Hy= U{s(p): perl} is a subgroup of G.

(2) i = pmg where KC G 18 a compact subgroup and pe K",

(3) K and K, = Ker p lie within H, and are normal in H,.

(4) K s central in H, mod K,.

(5) R={(a,9)eS x G: ad,xpm,ec '} is a subgroup of S X G

with H, = {ge G: («, g)e 2 for some |a| = 1}.

and we have I = {ad, xpomg : («, g) € 2}.

Conversely, let H, be a subgroup in G, let KCG be a compact
subgroup lying within H, and let o€ K" be chosen such that

(1) K and K, = Ker p are both normal in H,.

(2) K 1s central in H, mod K.
and let Q2 be any subgroup of S X G with H,={geG: («, g)c 2 for
some |a| =1}, Then I"' = {ad,xpomy: (&, g)c 2} 1s a subgroup of
e with Hy= U{s(p): pel’}, with i = ome as a unit, and with
Qcia,9)e S x G: ad,xomge '} = Q-{(ok), k) : ke K}.

Proof. The first part follows from 3.1.2, 3.1.5, and 3.1.7. Con-
versely, if K is central in H, mod K, = Ker p in a scheme of this sort
we must have om0, % pmy = 0,xomy for all ge H,. This means that
I" is a group, since the only difficulty in showing this lies in the
verification that /" is closed under convolution. It follows immediately
that H, = U{s(y): eI’} and that 7z,:(a, g) — @d,xomg is a homo-
morphism of 2 onto I with kernel 2 N {(o(k), k) : ke K}. Notice that
Qand 2'=0-{(o(k), k): ke K} give rise to the same group of measures /.

The classical example of a subgroup in Y is a group of translates
of normalized Haar measure I" = {0,xm,: € Gy}, where QCG is a
compact subgroup, normal in the subgroup G,. Theorem 3.1.8 can be
stated in a form which shows that every subgroup " C ¥, corresponds
to a subgroup of this type in Y,s«s rather than ¥, ..

Let 74, 7y be the projection homomorphisms in S X G and let
QD Q, be subgroups in S X G satisfying the conditions

(1) £, is a compact subgroup of S X G normal in 2.

2) SN =(@1,e), so T, (x)N 2, is a single point if 2 e T(Q,).
If we are given a compact subgroup K G and a function pe K", we
define the mappings

T S X G— M(G)
%1 C(G) —— CS x G)
o M(S X G) — M(G)

such that 7(«, g) = @i, * pmg, T*P(a, g) = (T, g), ¥, and {T¥*p, > =
{p, T, Clearly t¥¢e C(S X G) since K is compact, and t**0,,, =
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ao,xpomg for (a,g)eS x G. Furthermore, z**: (M(S X G), (0)) —
(M(G), (0)) is a linear map which is continuous on norm bounded sets

since pj—i—> j23 in 2ygxa P € Co(G) =

{e** sy D = pts, T —— ot T = (T, )

Also, 7** is a norm decreasing linear map.

Now take K = ms(2,), where 2 D%, satisfy (1) and (2) above, and
define the function o(k) on K such that (o(k), k)e 2, for each ke K.
It is clear that pe K" since £, is compact. Let us also define H, =
wo(2), K, = me(2, N G). Then K, = Ker p and it is easily verified that
K, is normal in both H, and K, and that K is central in H, mod K,
from conditions (1) and (2). Thus I" = {ad,xpomx : (@, g)€ 2} is a sub-
group in ¥y since 3.1.8 applies to the system of objects H,, K, K,, o.

The mapping t**0 : (@, g) — @d,* omg is a homomorphism on 2 since

T**0(ayay, 0109 = ozlafz’b‘glg2 * OMg = 011691 * OM % 0,0 g, % OM

— kK * ok
=7 5<a1,gl)*z' 5(012»02)'

From normality of 2, in 2 it follows that I'™ = {0,%m : v 2} is a
subgroup of 2y sxa.

LEMMA 3.1.9. If Q> 0, satisfy conditions (1), (2) above, and if

I' ={ad,xomg: (a, g)e 2} then 7,: Q— I is an epimorphism with
kernel 2.

Proof. We have indicated that 7, is an epimorphism. If 74, g) =
pmyg, then ge K and we have ad,xpomg = ap(g)omx = omg; hence
a = p(g) and («, g) = (0(9), 9) with ge K, so («, g) € &, by definition of o.

THEOREM 3.1.10. Given subgroups 2D 82,in S X G satisfying (1)
and (2) let K = ma(2y), define 0 = mgo(me| Q)™ on K, and define
o** s M(S X G)— M(G) as above. Then pe K" (so 7, and T** are
well defined), I' ={ad,xpmg: (@, g)e 2} and I ={0,%xm,: xe 2}
are subgroups m 2y ond Xysce respectively, and T** 48 an
tsomorphism between I~ and I'. Conversely, iof I' C 2y 98 a sub-
group with unit © = Omg, 1t arises from o pair of subgroups 2 O £,
wm S X G which satisfy conditions (1) and (2) by means of the above
construction if we take 2 = {(a,9)eS X G: ad,xomge '} and 9, =
{(a,g)e S X G: ad,« omx = pmg}.

Proof. To establish the first part we will show that t**(d, xmg) =
%49, = 7o) for any xe 2; then from 3.1.9 it is clear that z** is an

isomorphism between 7"~ and I". But £, is compact, so there exists a

net {\;} in co[&,] with Mﬁzemgo; hence b‘x*xj-ﬁ)a&*’mgo and
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T**(0, * My ) e(i)— T, % N;)=1T**(d,), as required. Conversely, if I"'C Y,
is a subgroup, and if 2 592, are formed as indicated, then properties
(1) and (2) hold as a consequence of the following lemma, which will
be of interest later on. Once this is shown, it is easy to check (see
3.1.8) that 7x(Q) = supp ("), 7)) = K, and p = wgo(m| Q)" on K.
In the first part we showed that =** must be an isomorphism of
{0,%my, : € O} onto {ad,*omg : (@, g) € 2} and we know that I” coincides
with the latter subgroup of %, from 3.1.2.

LemmA 3.1.11. Let G be o locally compact group and let I' C Xy 6

be a subgroup with unit © = pmyg. Form the pair of subgroups in
SxG:

Q={a,g9)eSXG: ad,xpmec}D
Qo - {(CK, g)e SxG: aég*pm'lc - me} .

Then we have 2, = {(0(k), k): ke K} and this ©5 a compact subgroup
of S X G, normal in 2. If we define the map ,: (&, g) — b, * oM
Jor (a,g)e S X G, then ©,: S X G— (M(G), (0)) s continuous and
Tt Q— I 18 an epimorphism with kernel Q.

Proof. 1f t{a,g)=1 then g ¢ K and we have ad xomg=a-p(g)- 0m.
Hence @ = p(g) and («, g) = (0(g), 9) with ge K. Since pc K", 2, is
a compact subgroup of S X G. Let H,=supp(l’), K, = Ker p; from
3.1.8, K is central in H, mod K,, 80 0,%0Mg = 0Mmg*0,%0mg for
g€ H, (see 3.1.6). Thus 7, is a homomorphism on £ (that it is onto is
clear from 3.1.2) since

T, §:95) = alazagl*ggz*me
= alazagl*pmx*agz*pmlz = T, 91) % To(AXay go)

if ¢, g.€ H,. Obviously 2, =Kerz,|2, so £, is normal in 2. The
continuity of 7, is clear.

4, Norm decreasing homomorphisms on locally compact
groups. Let G be a locally compact group and consider on M(G) the
(0) and (so) topologies defined in § 1. KEvery norm decreasing homo-
morphism on LY(G) extends naturally to a norm decreagsing homomorphism
on M(G). To appreciate the usefulness of this extension theorem it
is helpful to recall 1.1.8.

THEOREM 4.1.1. Let F, G be locally compact groups and let
@ LNF)— M(G) be any morm decreasing homomorphism. Then ¢
extends uniquely to a norm decreasing homomorphism o : M(F') — M(G)
which s continuous on norm bounded sets as a map of (M(F'), (s0))
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wnto (M(G), (0)). If {e;: jed} is a left approximate identity of
norm one wn LYF') then the extension is given explicitly by the
formula

P(p) = lim {ple;xpe): je J}  all pe M(F),

where the limit 1s in the (o) topology. A similar result holds for
right approximate identities.

Proof. Let B = @o(LF')) and let A be the (o) closure of B in
M(G), so that A and B are subalgebras of M(G).

LEMMA 4.1.2. Let {ej': jeJ} be a left approximate tdentity of
norm one and let {e,”: ke K} be a right approximate identity of
norm one in LY(F). Then in M(G) the (o) limit points of the nets
{plesh} and {p(e,”)} all coincide in a single tdempotent ¢c M(G), so
we must have convergence

ples) ‘(0—)"5

ple,") _)(a) ¢
in the (o) topology. If ¢ + 0 then ¢+ 0 and we have a = (xa = a*¢
for all ae A.

Proof. Since ||@(e;!)|| =1 there is at least one (0) limit point A

for this net, and for an appropriate subnet we get @(e,-(p,’)ﬂx.

Thus if fe LF) we have
(@)
N @f <2 p(eiin)) * pf = Pleiin' *F) — p(f)
Hence if {t;: ¢ I} is a net in B with g = o(f,) and ;2 pt in A,
we have

x*pﬁ-x*yi:x*gpfi:@fi:m—@»p

so that xxa = @ for all ac A. In particular we have A e 4 so Axh = A.
Similarly if v is a (o) limit point of {p(e,”)} then vxyv =vand axy =a
for all ac A.

If N, v are (¢) limit points as above, we have A,y in A, which =
A = A%y = y; hence M = v and all limit points (left or right) coincide
in a single idempotent ¢ such that ¢xa =ax¢c=a if ac A. If @ = 0,
clearly ¢ == 0.

The main step in our proof is to show that, if {f;: jedJ} is a
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norm bounded net in L'(F’) which is (so) convergent to some ze M(F),
then the net {p(f;)} converges to a limit A, in the (o) topology, and
this limit depends only on g, rather than on the particular choice of
the net {f;}. This can be done for any pe M(F'), in view of 1.1.5.
First consider any fe LY(F') and notice that ||fixf— puxf||—0,
which = || pfixpf — p(*xf)||— 0. Let X be any (o) limit point of
the norm bounded net {p(f;)}; there exists a convergent subnet

(@)

@(fiw) — M. Then

P15 1) P2 o(fri ) = @ Fiio# Pf ~2o Nk f

for all fe LY(F'), which means that @(uxf) = Axq@f for all fe L'(F).
Clearly A e A since each o(f;)e B, and this means that

A= X*ze(—(ﬂ—x*g)(e/) = p(pxe,) .
Thus we get
A= lim {p(ux*e,”) : ke K}

in the (o) topology, and this formula doesn’t depend on anything but
the choice of pre M(F'). Hence if f; ), ¢, then X is the only possible
limit point of {p(f))}, so if we take x, = lim {p(pxe,”)}, we always
have of; 2, Moo

Notice that if fe L'(F') we have || f*e,” — f]]| — 0, which gives

A 2 p(fre) " (1)

so that ¢of =\, for all fe LY(F). Now define &(yt) = N, for pre M(F),
and verify the properties required. Clearly &(f) = @(f) for all fe L'(f),
so @ extends .

If (v) is a locally convex topology on M{F') we define the bounded
(7) topology (by) by taking as a basis of neighborhoods about zero
all sets XN Y where X is a (v) neighborhood of zero, and Y is a fixed
norm neighborhood of zero. From the discussion above we know that
if e M(F) and if W is a (o) neighborhood of zero in M(G), then
there is an open (bso) neighborhood V of zero in M(F) such that
(e +-VynL(F)cpp + W. Now let W < W be a (¢) neighborhood
of zero such that W = — W’ and W’ + W’ < W, and let U be an open
(bso) neighborhood of zero in M(F') such that

P+ U)ynL(F)yCppe + W'

If xep + U we can find a (bso) neighborhood U, of zero such that
(1) oM+ U)NLA(F)Con+ W’
(2) »+U,cp+U.
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Then we have @((\+ Uy)NLAF)C Py -+ U)NINF)C pu+ W’
and #((» + Uy N LY(F)) c xn + W', which together imply that

PN+ WHN(Pp+ W)+ @

(see 1.1.5), which means that pxe e + W, Hence p(u + U)c pp+ W
as required for continuity.

Clearly ||Ppll = sup{l|@p(pxe) |} = |[pll for pe M(F), and if
¢ e M(F') we have

_ (o) — — )
Ppan) < Plpx (ko)) = Ppex phke,T) — PLxPN

. , (s0) — . . .
since vxe,”—> A. Hence @ is a norm decreasing homomorphism.

ExampLE. In 4.1.1 we cannot replace the (so) topology with the
(o) topology in M(F'). Indeed, if Z = integers, S = circle, and if 8 is
some irrational number, then (237, @,0,) = 37, @,0.i.8 gives a
norm decreasing homomorphism ¢ : LY(Z)-— M(S). This map coincides
with its extension ®. The sequence {¢, =6,,: n=1,2...} is (0)
convergent to zero, while ¢(x,) is not (¢) convergent in M(S).

ReMARK. The proof of 4.1.1 is also valid for any bounded homo-
morphism ¢ : LYF')— M(G), which means that the structure of a
bounded homomorphism is determined once we know the structure of
the bounded group of measures @(&,); however, the structure of the
bounded subgroups in M(G) is generally not known unless G is abelian
or the subgroup lies within =, 4.

4.2. The structure of norm decreasing homomorphisms. If
@ extends the norm decreasing homomorphism ¢ : L(F') — M(G), as in
4.1.1, then I' = (&) is a subgroup of the unit ball in M(G). Using
the continuity properties of @ demonstrated in 4.1.1 and our knowledge
of the structure of /" we can determine ¢ completely (see 1.1.3).

Let 4 = pmg be the unit of I' and denote H,=supp (), 2 =
{la,)e S x G:ad,xom, e It D2, ={(a,9)e S X G: ad,xomg = pmg},
and K,=FKerp. Let 7: S X G— (S X G/2,), be the canonical map
onto the space of right cosets of £, so m is a homomorphism when
restricted to S x H,, and let z,: (&, g) — ad,xomg for (a,g)e S X G.
Then define §: F'— (2/2) C (S X G/), to be 0 = wor, 0P od, so that
0(x) = m(a, g) if and only if P(d,) = ad,*pomg in M(G). The mappings
involved are shown in the following (commutative) diagram.

SxGoo&lr
1
(S X G/2), D2/ < F
Figure 1
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ProposITION 4.2.1. The map ¢: F— 2/Q, is an epimorphism and
is continuous as a mapping ¢ : F— (S X G/2)..

Proof. Let z,2,¢ F and let («, g)), (@, g.)€ 2 be chosen such
that n(a;, g,) = 0(x;), and let («a, g) € 2 be chosen such that n(a, g) =
O(waw,). Thus P0,,) = a;0,, % ome. We have d(z.2,) = 0x,-0x, if w(a,g) =
w(a,, 9.)7(c, ¢,), which happens if (a,a., g,9.) € (@, 9)2,. This follows since

&alaﬁ(g*lglgy *0Mg = (80 ,~1% OM ) (0,04, % OM ) % (0,04, % OM )
- gﬁ(axlwz)_l * @(5%) * ¢(6w2) = IOmK .

We want to show 0: F— (S x G/Q,), is continuous. Because Pod
and 7 are continuous it suffices to show that 7,: SXG— N = t(S X G)
is an open map when N has the restricted (o) topology. Let (0, g,)e SxG
and let U x V be a product of open sets in S, G with «a,e U, g, V.
It suffices to show that z,(U x V) is always a (o) neighborhood of
7o, go) in N. If this set fails to be a neighborhood there is a net
{(@j, g;)} such that p; = ca;, g;) = a;0, xomg @, Oy % OMy, While
pi2 U x V). We can assume g;¢ g, WK for some compact neighbor-
hood W of g,, and, by taking subnets, we get g, — ¢g.€ ¢.K, &; — a, € S.

If we let g;* = 9i(9.7'90), then g;* — g,.. Let a;* = a;0(g9,7'g,); this
makes sense because g,0.7'€ K. Then we have

4 — o
To(aj*’ gJ*) = C(j*&(gj*)*me = a/f(o(gl lgo)ogj*a(gl“lgo)*pmlf

(o)
= aj‘sgj*{o/mz = t{a;, g;) — aoﬁgo*me .

Since g,;* — g, we must have a,;* — «, and @,* is eventually in U; hence
Tda;*, g;*) = tle;, ;) is eventually in 7,{(U x V), a contradiction.

Let ¥y (a2, g) = {ad,x pmg, ¥> for 40 C(G). Then ¥y e C(SXG)
since K is compact, and in fact 7*+ is constant on right cosets of 2,
in Sx G since 2, = {(o(k), k) : ke K}. If ¥eC(S x G) and is constant
on right cosets of 2, let us identify it with a function

¥ e C((S x G/2.),) .

This function vanishes at infinity since £, is compact. We can give an
integral representation for norm decreasing homomorphisms as follows.

THEOREM 4.2.2. Let F, G be locally compact groups and let
@i LNF)— M(G) be a nonzero norm decreasing homomorphism with
extension @ to M(F), as wn 4.1.1. Denote

(1) I'=p(&%)

(2) ¢ = pmg the unit of I°

(3) 2={a,9)eS X G: aj,xpmge I}
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(4) Q={(a,9)eS X G: ad,xomg = i}.
Define the maps
To: S X G— 1
%1 CG) —— CyS x @)
w*t* 1 Cy(G) — C((S x G/2,),)
0. F—— Q/0,

as indicated above. Then we have the representation
(%) Py vrp =, (T*T*op) 0 0
for all pe M(F) and + € CyG).

REMARK. Since 0: F— 2/2, is a continuous homomorphism and
iR € C((S X G/,),), it follows that (w*c*y)of is a uniformly con-
tinuous and bounded function on F. Thus the right hand side of (%)
is uniquely determined. We will want to make use of 1.1.1 in the
following discussion.

-

Proof. We have {P(d,), ¥) = {8p T*T*y) = 0, (T*T*yr) o) if
xe . If pe M(F) is of norm one then there exists a net {o;: jeJ}
in the convex span of the extreme points of %y, such that |[o;]|=1

and aj—(ﬂp (see 1.1.3). If we write o, = 3\ M, )0, (finite sum),
we can apply 1.1.1. to get :

<¢/"’ "//‘> AN <¢(0j): "#> = Z A (.79 (E)<§5(5,), "l">
= 22 MJ, )0, (T*T*9) 0 0
= (05, (TTH ) 0 O — {1, (WTHpo 0

Thus <¢//‘7 “F> = <#’ (75*’1'*1#)00>.

As a converse we have the following theorem which classifies all
norm decreasing homomorphisms.

THEOREM 4.2.3. Let F, G be locally compact groups and let I
be a subgroup of Iy With unit © = pmgx and with

Q={(a,9)eS X G: ajd,xpmgel},

2 ={a,9)eS X G: ad,xpmg = 1}. Then of 0: F— 2/Q, is any con-
tinuous epitmorphism (2/2, s given the restricted topology from
(S x G/2,),), the relation

(%) {pte, ¥y =<, (@) o 0y
for pe M(F), e C(GQ) defines a norm decreasing homomorphism
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@ : (M(F), (s0)) — (M(G), (0)) which ts continuous on mnorm bounded
sets, and we have P(&,) = I,

REMARK. If & has the above continuity properties it is clear that
@ is obtained, as in 4.1.1, by extending the norm decreasing homo-
morphism & | L'(F).

Proof. From 3.1.11 we see that &, is a compact subgroup of
S x G which is normal in 2, so 2/2, is well defined. We have also
noted that t*y(«, g) = {ap,*xpmg, ¥ is in C(S x G) and

TC*T*“/TG Co((S X G/-Qo)r) ’

80 (w*Tc*4r)od is bounded and uniformly continuous on #. Hence (%)
is always well defined.

Clearly @ : (M(F'), (s0)) — (M(G), (0)) is a norm decreasing linear
map, and continuity on norm bounded sets follows from 1.1.1. Now
P(0,) = ad,xpmy for all (a,g)en0(x), so Hoo = (tyemw™')ol; thus,
P(Ly) =1 and @ is a continuous homomorphism of (&%, (s0)) into
(M(G), (0)). Convolution is a jointly (so) continuous operation in X ,,,
80 @ is a norm decreasing homomorphism of M(F') in view of the
density theorems 1.1.3, 1.1.4.

A norm decreasing homomorphism ¢ : L'(F') — M(G) is order pre-
serving if ¢ = 0= () = 0. From the continuity properties given in
4.1.1 and the structure theorem 3.1.8 it follows that ¢ is order
preserving < (%) is a group of translates of Haar measure
{0,xmq: xe Gy}, where Q CG is a compact subgroup, normal in the
subgroup G,. Every norm decreasing homomorphism ¢ is closely related
to an order preserving norm decreasing homomorphism of L'(F') into
M(S x G).

If 2250, are two subgroups in S X G satis{ying conditions (1) and
(2) in the discussion following 3.1.8, define the maps <z, «--, ** as
indicated there.

THEOREM 4.2.4. If &: (M(F), (s0)) — (M(G), (0)) 18 a morm de-
creasing homomorphism, continuous on morm bounded sets, and if
I' = (&) has unit 1 = pmg, then the subgroups

Q={(a,9)e SxG:ad,xpmge '} D2 ={(a,g) € SXG: ad,* oM = omg}

satisfy conditions (1) and (2) of 3.1.9 and we can factor @ = t**o@
where @ 1s some order preserving norm decreasing homomorphism
of M(F) wnto M(S x G). Here @ maps & to the group of measures
{0,%mg,: xc 2} and T** 4s a homomorphism on the range of @.
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Conwversely, if @: M(F)— M(S X G) ts any order preserving norm
decreasing homomorphism, let £ = supp (P(&£)) D2, = s(@(3,)). If
2, 2, satisfy conditions (1), (2) in 3.1.9, then @ = t** o @ : (M(F'),(s0)) —
(M(G), (0)) ts a norm decreasing homomorphism, continuous on norm
bounded sets.

Proof. Let QD 8, satisfy (1) and (2) of 3.1.9 and define M, to
be the subspace of measures in M(S X G) whose intersection with
Ysxer 18 0[S &, : 0]. We assert that

(¥) M, is a subalgebra in M(S x G), t**(d,*my) = T**(3,) = T,()

for xe 2, and 7** is a norm decreasing homomorphism on M,.
Clearly M, ={t¢ :s(¢t) C 2}, and is a subalgebra. We have already shown
(in discussing 3.1.10) that my e M, and **(0,*m,) = T**(9,) = 7o)
for all ze 2. Thus v** is multiplicative on S%,, and since convolu-
tion is separately (o) continuous we can show that c**(0,%py) =
c+(3,) ¥ () for pe My, me @. Then if A;—2» for ||\ || = 1, where
€ eolS &, we use the same idea once more to get

U) . - 73
PRk pr) D R (g ) = T R T (p) — D TRE(N) R T (1)

80 7**| M, is a homomorphism.

Now @ maps S&; into M, and if pre M(F'), || ¢£|| = 1, there exists
a net {¢;}CcolS&y] such that /zjﬂ p. This means @p; ), ou
while @p; € Xysxey N My, so Qe M, and @ maps M(F) into M,. Thus
7**@ is well defined and is a norm decreasing homomorphism with the
desired continuity properties (t** is (0) continuous on M(S X @)).

Conversely, let @ be given; then £, 2, defined above satisfy (1)
and (2), as shown in 3.1.11. The homomorphism 0 : F'— Q/2,, associated
with @ as in 4.2.2, is continuous, 80 0*« = o0 is uniformly continuous
and bounded (UCB) on F and we can consider the dual maps.

0%+ C((S x G2Qy),) —> UCB(F)
0% 1 M(F) —> M((S % G/2),) -

For +r e C(S x G) define n*yr e C((S x G/2,).) by lifting the function
T*p(x) = Sn/r(xt)dmgo(t) (constant on right cosets of 2, over to the
coset space (S X G/2,),. The desired map @ is given by

Op, ) = L0**p, whypy = L, (m¥) 0 )

for e Cy(S X G). It is easy to verify that @(0,) = 0,4 *m,, for all
(a, g) € T'0(x); therefore, as indicated in 3.1.10, we have {z**@(d,), v)> =
(T Brar ¥ M), ¥ = (T B ), ¥ = LBy Mg, B = <PBI> for
all ze F. Thus @ = t**®@ on S&,. But from 1.1.1 we see that @
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defined above is continuous on norm bounded sets mapping from the
(so0) to the (o) topology; clearly, then z**@: (M(F'), (s0)) — (M(G), (0))
is continuous on norm bounded sets. Now & and 7**@® both enjoy
this continuity property and coincide on S&5; from 1.1.3 it follows

that they coincide on all of M(F'), and this is the desired factorization
of @.

5. Examples and applications. In 5.1 we analyze the special
structure of norm decreasing monomorphisms ¢ : L'(F') — M(G) between
locally compact groups F' and G; then in §5.2 we give the structure
of all norm decreasing homomorphisms ¢ which map L'(F') onto LYG).
Maps in the latter class have very simple structure.

5.1, Norm decreasing monomorphisms. Let us denote & =
S&,={ad,: la] =1, xe F} and &, = &5 throughout this discussion.

LEMmA 5.1.1. If ¢ LF)— M(G) is o norm decreasing mono-
morphism, and if @ is its extension to M(F) as in 4.1.1, then ¢ 1is
a monomorphism of M(F') into M(G). Furihermore $(F,) N St = {i},
where © = p(0,), and p =N in P(F,) whenever s(p) = s(\).

Proof. If p,ne M(F) have Hp = @rn =& and ¢ # A, then there
is some fe L'(F') such that g f = A« f while p(uxf) = p(AMxf) = &xf,
a contradiction. Hence @(.%,) N St = {i} and the last property follows
from 3.1.4.

We propose to study the structure of all norm decreasing homo-
morphisms ¢ whose extensions @ have the special property I, N Si = {3},
where Iy = @(F,) and 1 = »(6,) is the unit in I, This discussion
will apply to norm decreasing monomorphisms as a particular case.
Hereafter we will denote I" = @( 7 ), I', = &(F,) (writing the unit of
these groups as ¢ = pmg), H, = supp (), and

Q={a,g)eS X G: ad,xpmygel}.

Let 7 : G — (G/K), be the canonical map onto the right coset space,
so w: H,— H,/K is the corresponding canonical homomorphism. Let
s Va be the topologies on F, G and, if v is a group topology on G,
let v/ denote the quotient space topology on (G/K), (notice v/r = w(v)).
The restriction of v¢ to a subset NC G is v,|N. We will speak
interchangeably of a topology v and the collection of open sets it
specifies.

The following lemma holds for all locally compact groups; notation
is chosen so its meaning in the present context is clear.
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LeMMA 5.1.2. Let F, G be locally compact groups and consider
any system of subgroups Kc H,C G with K a compact subgroup in
G which is normal in H, Let ©: G— (G/K), be the canonical map
onto the right coset space. If (: F— (HJ/K, 74/7) ts @ continuous
eptmorphism then {(vy) and w ' ol{(v;) are topologies in H /K and H,
respectively; moreover, if v ts the common vrefinement in H, of
(ve| Hy) and w*ol(vz) then (H,, v) s a locally compact topological
group, v/t =(vy), and {: F— (H/K, v/T) 48 an open, continuous
eptmorphism.

REMARK. Unless K is trivial, 77*o{(v;) will not be a Hausdorff
topology, but in all other respects (homogeneity, joint continuity of
multiplication, ete.) it is like a group topology.

Proof. The topology axioms for mw *o{(v,) follow if we can verify
them for {(v;). Only the finite intersection property is nontrivial. If
Vi, V,eve let U, = V,;-Ker{ and notice that {(x) N U; #+ & implies
that {(x) c U;,. Thus

LVINLUVY) =LUINLT) =2: Ty U, # @, v+ =1,2}
= C( U1 N Uz)e C('YF) .

Now (H,, v) is a Hausdorff space and the collection of sets Z =
{UNV:U=WnNH, Wevg; V=rn'ol(X), Xev;} is a base for 7.
If UNnVez/ then (UN V)= U"'N Ve %, so the inverse mapping
is bicontinuous. It is quite easy to verify that v is homogeneous, in
the sense that vy = {aU: Uev} for any x<c H,, so joint continuity of
multiplication will only be proved at the identity ec H. If ¢ lies
within UNVe % there exist U,ev:| H, and V,€ 7 'o{(v,), which
contain ¢, such that Ulc U and V< V; hence (U, NVy) x (U,NT,)
is an open neighborhood of (¢, ¢) in (H,, 7) X (H,, v) which maps into
UNYV under the product mapping.

Clearly v Do {{(v;), so that v/m = n(v) Do YL(v;)) =L(vs). For
the converse inclusion, we first make a few simple assertions:

(1) If Ac H, is a union of K-cosets and if B is any subset of
H,, then (AN B)-K = AN (B-K);

(2) If A.c H, for indices a e I, then (Uuesrle) K = Urer(4,-K).
Now a typical element in v has the form X = U.e;4. NB, where
A, =ne{(U,) for some U,e",; and B, =V,N H, for some V,€ .
Evidently A, = A,-K and B,-K = n~'o(nB,), so we get

(X) = (X K) = m(Uaes(4e N Ba) - K)
= T(Uzerde N (Bo- K))
= T(Uee:mUUL) N 77'7(B.))
= Ue«erl(Uo) N (B.) .«

()
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But continuity of { implies that {(v;) D (ve/m| H/K) and it is easily
verified that the latter collection of sets is just m@(ve|H,); hence the
last term in (x) is in {(vy), giving #w(v) < {(vF). Clearly v/m = {(v,) =
{: F—(H/K, v/r) is an open mapping; so (H,/K, v/7) is topologically
isomorphic to the locally compact quotient group F/Ker ({). To see
the local compactness of (H,, v), notice that K< H, is v compact
because v| K = 74| K. A result due to Mackey gives local compactness
(see Montgomery-Zippen [7], p. 52).

If xe F write s(x) = s(3(d,)), a coset of K in H,. The map { =
wos: F—((G/K),, Ys/7) carries F onto H /K, is a homomorphism (see
2.1.1), and is continuous since x; — ¢ = 6” — 0, = C,D(ij) — P(0,) =
mos(w;) — mwos(w). If pel'yand ge s(y), then we can write pt = o, | pt| =
0.0,xmg) and we can take p, to be a unique continuous function on
the coset s(y)c H,. Assigning o, in this manner for each pe ', we
have pua(st) = p.(s)o(t) for se s(y), tes(\), as indicated in the proof
of 3.1.2. Define p on all of H, such that o(x) = p.(x) if x e s(y), el
this is unambiguous since s(¢) = s(\) = ¢t =\ (we assume I', N Si = {1},
so 3.1.4 applies).

Consider the group topology v on H, constructed as in 5.1.2 for
the epimorphism { = wos: F— (H,/K, v4/7).

ProposiTION 5.1.3. (H,, 7} is a locally compact Hausdorff group
and poe (H, 7)".

Proof. Clearly p is a unimodular multiplicative function on H,
which is continuous on cosets of K (see proof of 3.1.2). The topological
group properties of (H,, v) were verified in 5.1.2. Given ¢ > 0 we can
find a v, neighborhood V of the unit in G such that | o(g,) — o(g.) | < ¢
for all ¢, g,€ H, with g, = g, mod X and ¢g,7'g,€ V. This is clear since
0.7(8) = p(gs) = ap(s) for some || =1, whenever se K, ge s(p), pe [’
(see proof of 3.1.2), and we know o is uniformly continuous on K.

Let ge Hy; then g,¢ s(x,) for some z,€ F, and if U is a compact
v neighborhood of x,, N = s(U) is a neighborhood of g, in (H,, 7).
N is compact since econtinuity of wos: F— (H/K, v/z) = mos(U) is

compact, and since K is a v compact subgroup in H,. If p fails to be

v continuous at g, we can find a net {g;}C N such that gj—(r)—>go

while o(g;) — B # B, = p(g,). For each index j there exists an ;¢ U
such that g;es(x;); we can assume that the net {x;} is v, convergent

to some x,¢ U, which will = y¢; = %(9, j)ﬂ»gﬁ(éﬁ) = u¢,. But this
= s(ty) = 9,K = s(p), since g; _(7*1)) Jo, SO ft; = 4o = $(0,,). Recall that
1 = 000, xmyg) and pt, = P(9, % mx) from the definition of p.

If 4+eC(G) has sup norm one and {#, > # 0, then ¥(s) =
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SwwmmM%@ism(KQ,HW@éLzmiW@:@%)mrﬂl
se ¢g,K, where a = {yt,, v)> (a constant = 0). Furthermore,

I

<oy 0 = [[| witpp(tama® |ots)afs,, +mcl(o)

S
g[S“/f(1*8).O(tS)d?an(t)]ol[ag0 *1m)(8)
|

{l

P @)o@)dme x5 m2)
= | v @o@0dld, xmel(@) = gt 4 -

If e >0 we can insure that |¥(g;s) — ¥(g9s)| <& for all se€ K and
J = j. since g; o), g,, and this means that a = {pt, ¥ —p;, > =
S!de[ﬁg JEmg] = Sw(gjs)p(gjs)de(s). The last integral is eventually
within & of

| @) )ims(s) = o | paplgss)dma(s)
= a | pladp(g)dmc(s) — aBiB .

Since this is true for all € > 0, and B, # B, we have a contradiction.

COROLLARY 5.1.4. If Fis a compact group and ¢ : L'(F)— M(G)
18 a norm decreasing monomorphism, then in 5.1.2 I' = $(F") is a (0)
compact subgroup of >iye, Hy = supp (I") is a compact subgroup in
G, and v = vg| H, in H,. Thus if p is defined as above, p e (H,, 75)".

Proof. Clearly I’ is compact; H, is then v, compact since
(H/K, v4/mt) is compact (recall wos: F— (H,/K, 7¢/7) is a continuous
epimorphism). By definition of v the map zwes: F'— (H/K, v/n) is
continuous and we know that K c H, is v compact; thus H, is ¥ compact
as well as v¢ compact. Since v is finer than 74, these must be equivalent
topologies on H,.

Congider the following maps between measure algebras.

(1) Let H,G be locally compact groups and let 5: H— G be a
continuous monomorphism. Define j**: (M(H), (s0)) — (M(G), (¢)) such
that {j**pu, > = {p, yojy for 4 € C(G).

(2) Let H be a locally compact group and let pe H". Define
Ayt (M(H), (s0) — (M(H), (s0)) such that A(g) = ppt, s0 {Anpt, ¥ =
e, Y.

(3) Let F, H be locally compact groups, let K be a compact
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normal subgroup in H, and let {: F— (H/K, v5/w) be an open con-
tinuous epimorphism, where 7 : H — H/K is the canonical homomorphism.
Then define @ : (M(F'),(s0))—(M(H ), (s0)) such that @y, >={pt,(w* ) >,
where the function 7*yr(x) = \ V(xt)dm(f), constant on cosets of K,

is considered as a funection in Cy(H/K).

We assert that the maps in (1) --- (3) are all norm decreasing
homomorphisms, continuous on norm bounded sets with respect to the
topologies indicated. Since (A,p)*f = o(p+0f), this assertion is clear
for (2), and follows easily from 1.1.1 for (1), because + o7 is uniformly
continuous and bounded on H; we momentarily put off verification of
(3). Once this assertion has been checked we can prove the following
structure theorem.

THEOREM 5.1.5. If we are given groups and maps as in (1) - -+ (3)
then the map @ =J** oA, 0@ : (M(F), (s0)) — (M(G), (0)) %8s a norm
decreastng homomorphism, continuous on norm bounded sets, with
the special property that I'yN St = {¢}, where [y = $(F,) and 1el”
is its unit. Conversely, let ¢ . L{(F)— M(G) be a norm decreasing
homomorphism whose extension @ (as described in 4.1.1) has the
special property I'yN St = {1}, where 'y = $( ;) and © = pmg s its
unit. If H, = supp ("), then we get p = j** o A,o@ by taking groups
H=H,7"">K=(K,v) and maps { =mrmos: F— (HJ/K,v/n), =
©d : (Hy, 7) — (G, ve), where pe (Hy, v)" is the unique function on H,,
continuous on cosets of K, with the property p = p|p| for all pel.

ReMARK. In the first part, @ is clearly the extension of ¢ =
@ | L'(F). Furthermore, the unit of I will be © = pm and supp({") = H,
when H and K are regarded as subgroups in G. In the second part
the v topology in H, is defined as in 5.1.2.

Proof. In the first part consider H and K as subgroups of G (with
new group topologies) and j as the identity injecting H into G; H
has a topology finer than ~v,|H, but since j is continuous, it is a
homeomorphism on compacta and on cosets of K in particular. If
xe F it is easy to verify that @(d,) = p(d,*xmg) for any ge T 'ol(x).
From this it is clear that /7 has unit ¢+ = pmg, and that /7, N S¢ = {3}.

Conversely let @ : LY(F)— M(G) be given. If we take H = (H,, v),
K= (K,7v) and let { =mos, 7 =14d: (H,, v) — (G, vs), we see that H
is a locally compact group and that {: F— (H,/K, v/m) is an open,
continuous homomorphism (5.1.2); thus, the maps j**, 4,, @ are well
defined. We know o€ (H,, v)" from 5.1.3.

If e F then |®(0,) | = 0,%xmx for any g € s(x) and @(9,) = 0(0,*Mx)
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by definition of p. It is a simple matter to verify that
1d** 0 A,00(3,) = 0(0,* M)

for any ges(x), so that @ = id**oA,0® on &, Since the maps on
cach side of this identity are continuous on norm bounded sets, as
maps of (M(F'), (s0)) into (M(G), (¢)), we get & = 1d**oA,o@ on all
“of M(F) from 1.1.3.

COROLLARY 5.1.6. A mnorm decreasing homomorphism @ : L'(F)—
M(G) is & monomorphism < its extension has the structure @ =
1d**o0 A,0 @, as in 5.1.5, where the map { = wos which induces @ is
an rsomorphism of F onto H,/K.

Proof. If ¢ is a monomorphism, so is @ | F (see 5.1.1); now 5.1.5
applies and it is clear that { = wos is an isomorphism, as required
for (=). Notice that the maps A, and id** are always monomorphisms
in (2) and (3) above. Conversely, in (3) we have @ = 7**o{**, where
&y, ¥y =<, Yoy and <7L'**{l, ¥y = {tt, w4 define maps

c** 7?**
M(F) — M(H/K, v/m) — M(H,, 7) .

Since { = wos: F— (H,/K, v/w) is a topological isomorphism if { is
1:1, {** is a monomorphism. It is easy to verify that 7*(Cy(H,, 7))
is sup norm dense in C(H,/K, v/7); hence #** is always a monomorphism.

In the following paragraphs we digress to study the map defined
in (3) and prove the assertions about it which were used to prove
5.1.5. Then in 5.2, we will use these observations to study the
structure of special norm decreasing homomorphisms.

THEOREM 5.1.7. Let F and H be locally compact groups, let K H
be a compact normal subgroup, and let {: F— H/K be an open,
continuous epimorphism. Then the map @ : (M(F),(s0))— (M(H), (s0)),
defined such that {@pu, > =y, (T*y)ol>, is a morm decreasing
homomorphism, continuous on norm bounded sets, if we identify
T*() = gn/f(xt)dmx(t) (constant on cosets of K) with a function in

C(H/K) for each ¢ Cy(H).
Proof. Consider the maps shown in Figure 2,

(M(F), (s0) ——> (M(H), (s0))

l@1 ln’**
(M(F/Fy), (s0)) —2 (M(H/K), (s0))
Figure 2
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where F, = Ker ({), {@,z¢, > =y, yrom) (m,: F'— F/F, is the canonical
homomorphism), (D, ¥> =y, polomy™), and where {m**p, > =
{pt, w*p>. Clearly @, is bicontinuous with respect to the topologies in
Figure 2. Continuity of @ follows from the lemmas below, since we
can verify by direct computation that @ = 7**o@,0 @, on M(F).

LEMMA 5.1.8. Let Q be a locally compact group with Q,C Q «a
closed, mormal subgroup, and let w,: Q@ — Q/Q, be the canonical homo-
morphism. Define @ : (M(Q), (s0))— (M(Q/Q,), (s0)) such that {@t,~r> =
e, pomyy for e CQ/Q,). Then @ is a morm decreasing homo-
morphism, continuous on norm bounded sets.

Proof. It is easy to verify that @ is a norm decreasing homo-
morphism. We assert that @(M(Q)) = M(Q/Q,), and in fact @2, ) =
uigrops from this it will follow that @(LY(Q)) is a two sided ideal in
M(Q/Q,) since LY(Q) is a two sided ideal in M(Q). If Yy =
{ellpll =1, s(pyc X} for X @, we will show that O(Xy) =23,
for all compacta K C Q; since m, is open, this means that every /¢ with
compact support in M(Q/Q,) is the @-image of some pe M(Q) with
[l el = [|n]]. Clearly @(2x) < 2;x, and K compact = the map

@ (Zg, (0) — (M(Q/Qy), (0))

is continuous, in fact if {y,;} C 3 with ;zj& poand if fe CyQ) has
f=1on K, then for any € C(Q/Q,) we get {@t;, > = {ftj, romw,y =
gy fo(prom)y — b, felpomy)y =@, >, Now X is precisely the
(0)-closed convex span of {ad, : |a| =1, x € K}, so @(Xy) is (0)-compact;
since @(0,) = 0., we have @(3y) Dco{ad.,: |a| =1, we K}, which
gives the converse inclusion.

Now if e M{Q/Q,) there are measures A, with compact support
such that [|A, — M| — 0 and [N = [[ M|+ 57 [ N — N, || (restrict
M\ to increasingly large compacta). Then there exist p,e€ M(Q) with
D(1t) =y 1l = [0 1 a0d @(1t) = ouis — M), [l a1 = [ = N |
for n = 1; hence g = >\7.,p, converges in M(Q), |||l =1\, and
@(1r) =\ as required.

Next we show @(LYQ)) C LY(Q/Q.); in fact, if 1 = &f and x ¢ Q/Q,,
then given ¢ > 0 and ge¢ m, '(x) we can find a compact neighborhood
V of g with ||d,xf — f|| < e for all he V. Thus || @(0,)x@f — &f|| =
|| 0yt — ptl| < e for yemV. Since m, is open and continuous, this
means ¢ = @f e LY(Q/Q,) (see Rudin [9], p. 230; the abelian hypothesis
used there is superfluous). To prove 5.1.8 it is now sufficient to show
that @(LY(Q)) is norm dense in LY(Q/Q,). To prove density, let {¢;} = L(Q)
be a left approximate identity such that e¢; > 0, ||¢;|| =1, and s(e;)
are compacta which are eventually within any fixed neighborhood of
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the unit in Q. Then s(@¢;) are compacta shrinking to the unit in @/Q,.
But {@e;, v>— +r(e) for all 4 € C(Q/Q,), hence De; —((L 0, and || Pe; || £ 1;
these facts together imply that lim {|| @e; ||} = 1. Since @e¢; = 0 (clear),
{@e;} < LY(Q/Q,) is an approximate identity for L(Q/Q,). Since @(LY(Q))
is an ideal in M(Q/Q,), norm density of @(LYQ)) in LYQ/Q,) follows.

LEMMA 5.1.9. If Q s a locally compact group, K Q a compact
normal subgroup with canonical homomorphism w: Q — Q/K, define
7% 1 (M(Q/K), (s0) — (M(Q), (s0) such that {m**p, vy = {pt, T
where THyr(x) = Sq/r(xt)dm,g(t) (constant on cosets of K) s regarded

as a function in CyQ/K). Then w** 4s a norm decreasing homo-
morphism, continuous on norm bounded sets.

Proof. Normality of K in Q= h*xmz = Mg*xh = mexhxmg for
all he LY(Q). Define &: M(Q) — M(Q/K) such that (&, > = g, Pom).
It is a simple matter to verify that (1) 7**&(p) = psxmg for all
re M@), and (2) &x**(p) = o for all pe M(Q/K). One can also verify
by direct computation that #**u = (z**p)xm, for pe M(Q/K). From
(1) we see that 7**(M(Q/K)) = M(Q)*my, so that 7**(LY(Q/K)) is
closed under right or left multiplication by elements of M(Q)*m .
Finally, z**(LY(Q/K)) C L'(Q); for if ¢ > 0 and ¢ @, and if fe LY(Q/K),
we can find a neighborhood V of n(x) with ||d,f — f|| < & whenever
we V. Thus, if W is a neighborhood of x such that #(W)CV, we
have || 0, * (T**f) — T**f|| = [| £(0,) * §(@**f) — &(@**f) || = || 0y xf — fI <€
for all ye W. Thus n**fe L (Q) (again see Rudin [9], p. 230). If
{e;} is a norm one approximate identity in L'(Q/K), then e¢; 0, 0,
and it is easy to show that ﬂ**e,-ﬂ»m,c = 7**(0,) from 1.1.1. We
can arrange that the supports s(w**e;) shrink to s(mz) = K, a compact
set; thus we get n**ej—gs—(im,z by applying 1.1.2. Since 7**(LYQ/K))
is closed under right multiplication by elements of mxM(Q) = M(Q)+mg,
we get (for any he LYQ)) || (T**e;) s Mgxh — MygxMmyexh || — 0, which
= **(LY{Q/K)) is norm dense in mg* LY Q).

Consider yj(io)nu in M(Q/K) with [[p;||=1; if he LY(Q) then
(T**pyxh = (@**p;)xmexh. But we can approximate mgxh in norm
by some n**f(fe LYQ/K)) and we know that (z**u,)x(n**f)=
T (1 ) s (7 ) (),

5.2. Norm decreasing homomorphisms which map L'(F) to
LYG). Suppose ¢ actually maps L'(F') onto L'G), then the structure
of ¢ is exceedingly simple. First recall that if ¢ is a norm decreasing
isomorphism of L'(F') onto LYG) it is actually an isometry; furthermore,
an isometric isomorphism has the special structure
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Gty w5 = | postap os(is@

where s: FF— (G is any topological isomorphism and oe G", as was
first proved by Wendel [10], [11]. Although the structure theorem
5.1.4 could be used as the basis for a direct proof of these results,
it only gives conditions on the structure of ¢ which are necessary
(but not sufficient) if we are to have @(LF')) = LYG). To identify
these norm decreasing isomorphisms (or isometries) precisely we would
have to retrace some of Wendel’s analysis rather than do this we use
‘Wendel’s analysis as a starting point.

THEOREM 5.2.1. Let o : L'(F)— L' (@) be a mnorm decreasing
epimorphism. Then there exists a closed norwmal subgroup F,C F,
an isometric wsomorphism A LNF/F)— LXG), and Bec F" with
Ker BC F, such that ¢ = Ao(n*Ay), where Ag(y) = By, and the
canontcal homomorphism w: F— F|F, gives {m*(pt), > = {yt, pom)
for e Cy(F/F,).

Proof. First notice that, if s(x) = s(®(0,)), then s: F—G is a
continuous homomorphism; in fact, #(0,) = om, for compact subgroup
Kc G and pec K", and if he L(G) we can write h = @f for some
fe LXF). Thus hxomg = o(f)*@(d,) = ¢f = h, which is impossible
for all h unless K = {¢}, s0 @ maps &y into &y. For continuity
of s see remarks preceding 5.1.3. Hence F;, = {xc F': s(x) = ¢ in G}
is a closed normal subgroup in I. If we define 8(z) = ae S = $(3,) =
ady.,, the continuity properties of @ (see 4.1.1) insure that Bec F";
thus Ag: ¢ — By is an isometric automorphism of M(F). The map
¥ . M(F)— M(F/F,) has been discussed in 5.1.8; we assert that =*
has the following properties (which will be verified at the end of this
proof):

(1) =*LYF)—= L'(F/F,), and

(2) [lz¥( |l =inf{[| £ + |l : neKer (z*)},
the quotient norm in M(F')/Ker (7*).

Clearly pe Ker (n*Ap) = {m*Ag(pt), v) = S By (re)dm(z) = 0 for
all ye C(F/F,); it is not hard to show that e Ker < Gy, y> —
|, <00, 9>dpn(@) = | B(&) Ouiary ¥ 2dpa(w) = 0 Tor € C(G). The non-
trivial first equality here can be seen from 4.2.2, or directly by looking
at the action of @ on finite sums of point masses and using the (so)
continuity of ®. We assert that Ker » D Ker (7*4;), so

A= po(n*Ap)™ 1 M(F|F) — M(G)

is a well defined homomorphism.
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LEMMA 5.2.2. If {f;} is a mnet of bounded functions im C(F')
with M = sup{|| fille} < = and f;— f uniformly on compacta, then

{p fio— o, £ for all pee M(F).

Proof. As usual, for bounded fe C(F') we define {yt, > =<y, xsf)
where E'e B(F') and E Ds(¢). For K compact in F' we obviously have
{p| K), fip— | K), f> and for suitably chosen compacta K, C s(u)
we have [t — (1| K,)|| — 0; hence {y, fi>— {¢t, f).

Each function ¥ (x) = {d,.), ¥ is continuous, bounded, and constant
on cosets of F, in F, if 4re C(G). But any bounded fe C(F) which
is .constant on cosets of F, can be approximated uniformly on compacta
by a uniformly bounded net of functions selected from {hom: he C(F/F,)};
in fact, if K F is compact so is 7K, and if U is a relatively compact
open neighborhood of 7K, we can find continuous % such that A =1
on 7K, h = 0 outside U and 0 =< < 1. Then f-(hor) coincides with
homw on F, where h(z) = h(z)-f(z (x))e C(F/F,); we have hjor = f
on K and ||h,o7 ||« = ||f]|l. as desired. Taking ¥ as the uniform on

compacta limit of uniformly bounded net {h;o7} we get

{pp, vy = {Bp, Tp = lm (B, h;om)t = lim {(x* Ag(p), hip} = 0

if pte Ker (z*A4g), so Ker 3 D Ker (7% 4,).
Now || 4] = 1 since (2) insures that

|7 Ag(e) [| = inf {[[ p£ + || : n e Ker (w*A4y)}

inf {|| £ + nl|: neKerp}

>
=z inf {||pp + @nil = || ppll} = | pp ]

forpe € M(F). Since w*: (M(F'), (s0)) — (M(F'[F,), (s0)) is continuous on
norm bounded sets (see 5.1.8), (7*)~' is open on Yy, relative to the
(so) topologies; hence A: (M(F/F), (s0)) — (M(G), (0)) is continuous on
norm bounded sets. From (1) we see that 4 maps L'(F/F,) onto LYG),
so 4 on M(F/F,) coincides with the extension A from L(F/F,) discussed
in 4.1.1. Furthermore,

M Epiz) = Po(@* A)™(Epiw,) = PlB@)d, : we F} = {0,y v F},

$0 M &pipy) N S{0,} = {0} in &y and the analysis of 5.1 applies; i.e.
we can write 4 = j** oA, ol* : M(F/F)— M(G) as in 5.1.5. In our
present context some of these maps are trivial since A(0,) = 0,101
for ¢ F/F;; indeed, o and K are trivial, 7 is the injection of H =
{s(z): x€ F'} into G, and {: F/F,— H is given by {(x) = s(4(3,)) =
s(r(z)). But F,=Kers=Kernw in F, so { is an isomorphism of
F/F, onto H; hence, as indicated in 5.1.6, 4 must be a monomorphism
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on M(F/F,). Thus 4 is a norm decreasing isomorphism between L'(F/F})
and LYG), and Wendel’s analysis applies to A.

In proving 5.1.8 we showed that =*(M(F')) = M(F/F,) and that
T (2 wm) = Tupirge LThe latter identity proves assertion (2) above.
Furthermore, we showed 7*(LYF')) c LXF/F,) is norm dense, and that
a right approximate identity {e;} of norm one in L(F) is mapped to
the same sort of approximate identity {z*¢;} in L*(F/F,). Let fe L\(F/F)),
say with [|f|| =1, and let pr € M(F') be chosen with || ¢|| = 1, n*p = f;
then w*(pxe;) = (T*p)*(w¥e;) = f*(T*e;) %f and pxe;e LNF) with
Hpxe; || = lpell =1 f]l. Hence we see 7*(Zp;) is norm dense in
Sugiry. We can find g, e LY(F) with ||g,|| =1 and ||7*g, — f| = 1/2.
Since w*g, — fe LN(F/|F,), there exists g, LNF) with ||g.|] = 1/2 and
|7*g, — (f — 7w*g) || < (1/2)*. By continuing this selection we get g, € L'(F')
with (| g, 1| = (1/2)"" and || 7*g, — (f — 2= w¥g5) || < (1/2)*. Thus g =
S g, converges in LY(F') and n*g = x>, w¥g, = f, proving assertion
(1) above.
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