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L e t D n = { x ε E n : \ x \ ^ 1}, a n d Sn = {x e E n + ί : | x \ = 1}.
We denote by Hn the space of C°° homeomorphisms of Dn onto
itself leaving a neighborhood of the boundary fixed. Let Kn

be the space of C°° orientation preserving homeomorphisms of
Sn onto itself. It is not required that maps in the two spaces
have differentiable inverses. In both space the Ck topology
is used.

The purpose of this paper is to establish the following
two theorems:

THEOREM 1. Hn is contractίble to a point for any n.
THEOREM 2. Kn is arcwise connected for any n.

NOTATION. f(x) = (fλ(x19 , xJ, , fn (xlf , xn)) where x =
(xl9 •••,»»), or simply f(x) will denote mappings of En into En. The
shorter form will be used where the meaning is clear.

The topological analog of Theorem 1 is established by a mapping
described by Alexander (1923) [1], Smale (1959) [4] proved the cor-
responding result for n — 2 in the space of diffeomorphisms on Dn

leaving a neighborhood of the boundary fixed. Kneser (1926) [3]
proved that the space of all orientation preserving homeomorphisms of
S2 onto S2 has the rotation group as a deformation retract, while
Smale gave the corresponding result for the space of orientation
preserving diffeomorphisms on S2 in the paper referred to above.
Fisher's work (1960) [2] gives the analog of Theorem 2 in the topo-
logical case for n = 3.

II* Proof of Theorem 1* Let m(v) be a mapping on I (the
unit interval [0, 1]) with the following properties:

(a) m(v) e C°°;

(b) m'{v) > 0 on (o, | - )

(c) m(v) = 1 on (A , l ]

(d) m(v) = e~{1'r) on (θ, —)
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(e) m(0) = 0.
ΛT Λ * , , ,v f 1 — (1 — e-{1't)+1) (1 - m(v)) t Φ 0,
Now define k(v, t) =\ , , * Λv 7 im(v) ί = 0,
on / x /. We see that:

(a') fcty, έ ) e C M o n J x /;
(b') k{v, t) is monotonic in v for each ί e I;

(c') k(v, t) = 1 for v ^ — for all t e /;
4

(d') fc(v, 1) = 1 for all vel;
(e') A?(v, 0) = m(v);

(f) 0 ^ A?(v, ί) ^ 1 on / x /.

The mapping

( 1 ) x->k(\x\2, t)x

is in Hn for each ί. At t — 1 the mapping is the identity, while at
t — 0 the mapping has all partial derivatives of all orders zero at the
origin.

The mapping given by Alexander was defined as follows:

[tf(—λ , tΦ 0 (/ extended to be the identity outside Dn) ,
ft(x) = j \t J

[x, t = 0.

In the Ck topology the mapping of Hn x I—• Hn defined by (/, t)—+ft

(the Alexander map) will not be continuous for k ^ 1. In general,
lim ft Φ /0 because at the origin the derivatives of ft do not converge

t-»0

to the derivatives of the identity mapping. However, by composing
the Alexander mapping with (1), we obtain the mapping required in
Theorem 1. Thus define

h:Hn x I-+Hn

by

h(f, t) = kft

where

= k(\ft(x)\\t)ft{x).

In particular h(f, 1) = / for all fe Hn1 while h(f, 0) is the mapping
given by (1). Because of the form of map (1) at the origin, all
derivatives of all orders of kft approach zero there and the problem
mentioned above is removed. The argument that h is continuous is
tedious but straightforward.
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III* Local straightening of mappings in En. The proof of
Theorem 2 requires some local straightening procedures for maps in
En which we now give. For this purpose let L be the space of C°°
orientation preserving homeomorphisms mapping Ur = {xeEn:\x\ ^ r}
into En9 leaving the origin fixed and topologized by the Ck topology.
We will use J(f)P to represent the Jacobian matrix of / evaluated at
p G Ur, and | J(f)P | the corresponding determinant.

LEMMA 1. Suppose fe L with J(f)p — (α i5 ), P the origin and
(an) nonsingular. Then there is a path fte L from f to g, where
g agrees with f in a neighborhood of the boundary of Ur and is the
linear map with Jacobian (α^ ) in a neighborhood of the origin. Also
for all t, ft agrees with f in a neighborhood of the boundary of Ur.

Proof. Let σ(v) be a mapping on [0, oo) with the following pro-
perties:

(a) φ)eC";
(b) σ(v) = 1 on [0, a)9 a > 0;
(c) σ(v) — 0 for v ^ 1;
(d) σ'(v) g 0 for ^e[0 , oo).

We see that | σ'(v) \ < M for some M. Let c < r be chosen so that
for xe Uc,

(i) < s, ε> 0; i - 1, • , n; j - 1, 2, •••,«.
OXj

Then for xe Uc,
(ii) I a^x, + + ainxn — f{(x19 , xn) \ < nεc for i = 1, 2, , n.

N o w define

tσ ( X ι + ' * ; +x" ) (a^ + - - + alnxn\ c2 /

+ tσ ( g? + + s ' ) ( α a + + αBMa
c 2

At t — 0, Λ = /; at t — 1, ft is linear with Jacobian (αi3 ) inside a
neighborhood of the origin; for all ί, ft agrees with / outside Ue.
The element in the (i,j)th position of J(ft) differs from ai3- by at
most
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t_ σ, / g ? + ••• +xl\ ( + . . . + ainxn - Uxu , xn))
2 V c 2 /c

tσ(χl+ -+χl)( _
V c2 / dXj

On Ue, I Xj I S c so that the expression is bounded by ε + (2/c) Mn ε c +
ε = (2 + 2Mn)ε. Hence by choosing ε sufficiently small, | J(ft) | will
remain positive on Uc for all t so that /* will be a homeomorphism on
Z7r. Continuity of the path ft in L is immediate from the definition

of Λ.

LEMMA 2. Let f(xlf -, χn) = {aίlx1 -\ f- alnxn, a22x2 H h a2nxn, ,
α % t ι # J e L with an « αw % > 0. T%βw ίfeere is α ^αί/^ / t e L s^cfe ίfcαt
a^t^b, ft(x19 . . . , aΛ) = /(a?!, , a?J at t = α, /t(a?i, •••,»») = (α n£i, ,
αftΛa;ft) iw α neighborhood of the origin at t — b, and ft(xlf

 m ,xn) —
f(xly -,xn) in a neighborhood of the boundary of Ur for each t.

Proof. We construct the path in n — 1 arcs as follows. Choose
a positive c1 less than r. Let kx > 1 be sufficiently large so that
whenever

r 2 4- P r 2 4_ . . . 4- L V 2 < /̂ 2

we have | aj< | < ε, i = 2, 3, , n
Now define

/ /y.2 4 _ L 2 /y 2 4 _ . . . 4 -

a
\aί2X2 + β + &2nXn)i 2̂2*̂ 2 + + &2>nfin) ' * ' f ^nn^n)

Then ft=f when t = 0 and ft at t = 1 is the mapping

(an^1 ? α22ίr2 + + a2nxn, , αnwa?w)

in a neighborhood of the origin. For each t, ft— f outside

Ύ* I L ̂ '/y 2 I « . # I Z^^/V*2 /*2

so that ft~f outside UOl. Also J(/ t) in the (1,1) position differs
from an by

2aJi / T ,/^i 2 + ^ a ; 2

2 + . . . +
1/ \J

'c2x2 \J - ϊ - J (α12a?2

This expression is zero outside the ellipsoid x\ + k\x\ + . . . + k\x\ = cj.
Inside this, | x1 \ < cx so if | ai3 \ < Mu j = 2, , n, and M is a bound
on the derivative of σ(v), the expression is at most 1 (2/c2) M(n — 1)
M1 ε. This expression is small whenever ε is small (nothing that ε
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can be chosen independent of c^. Thus by choosing ε small, | J(ft) \
will remain positive inside the ellipsoid and ft will be a homeomorphism
for each t.

Thus we assume / e L and for c{ > 0 with | x | ^ ct < r the map-
ping is given by

(anxlf , di^i^Xi^, (luXi + aifi+ίxi+1 + + dinxn,

aί+ui+1xi+1 + + di+Unxn9 , dnnxn).

Let hi > 1 be sufficiently large so t h a t whenever x\ + + x\ +
fe2

+1 + + k\xl ̂  cj, it follows t h a t \Xj\<e, i = i + 1, , w.
Define for xe Ur

1 + +

For the proper choice of ε, we can repeat the argument given above.

LEMMA 3. Suppose f(x19 , xn) — {a1xu , anxn) e L, α* > 0 /or
αZί i . Tfcere is α pαίfe ft in L from f to a mapping which is the
identity in a neighborhood of the origin, and ft — f for all t in a
neighborhood of the boundary of Ur.

Proof. First, if a > 0 let p(x) be a function on ( - oo, oo) with:
(a) p(x)eC~;
(b) p'(x) > 0 on ( - oo, CXD);

(c) p(x) = x in a neighborhood of the origin;
(d) p(x) = ax outside (— s + a, s — a), a > 0.

We again construct the arc in segments. Choose s1 < r and define

where σ is defined in Lemma 1 and Pife) satisfies properties (a) — (d)
above for s — slβ At ί = 0, /4 = /; at t — 1 in a neighborhood of the
origin ft is the mapping (xlfa2x2, -*-,anxn). Also for all tel, ft—f
outside the cylinder x\ + + x\ ^ si, — s1 ^ xλ ^ su J(ft) in the
(1,1) position is
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«, + to ( * + • • ; + * ) Pί'{Xl),

which is positive for all t on the cylinder given above. Hence ft is
a homeomorphism for each t.

Now there is an s2 with 0 < s2 < sx so that on the cylinder
a?? + X3 + β + #n 5£ sj, — s2 <; cc2 ^ s2 the mapping is given by
(x1a2x2, ** ,anxn). On this cylinder define

Here £>2(#2) satisfies conditions (a)-(d) given above with s = s2. Repeat-
ing the process we complete the desired path.

IV* Proof of Theorem 2* The proof now consists of fitting
together properly the mappings already constructed.

Let feKn. Then there is a point p on Sn so that / has non-
singular Jacobian at that point. Let (0ly Px) be a coordinate neighbor-
hood where 01 = Sn — p1(p1 antipodal to p) and Px an associated
stereographic projection. Now there is a path eu te J, in the rotation
group on Sn so that e0 is the identity map, ej = g leaves p fixed and
Pi{eif)PΓλ = P1QPΓ1 has a triangular Jacobian with positive diagonal
elements at the origin. Let C be a closed disk on Sn so that for
some r > 0, ί7r c Pi(C). Applying Lemmas 1 — 3 there is a path
(PiflfPf1)*, £ e /, in the space of mappings on ?7r from P^Pr1 to a
mapping which is the identity in a neighborhood of the origin.
Furthermore, for all t, (P1gPr1)t agrees with P.gPr1 for all x e
except on an interior set of Ur. Define gt e Kn by

= r i j i h P i on C

\g outside C.

Then g0 — g and gλ is the identity in a neighborhood of p.
Next let C1 and C2 be two closed sets covering Sn where CΊ is a

circular disk on Sn with p the center of the disk, and so that d is in
an open set left point wise fixed by glm We further assume p&C2.
Let (02, P2) be a coordinate neighborhood with C2 c 02 = Sn — p and
P2 an associated stereographic projection. Then except for a trivial
dilation P2^iP2~

1 is an element of the space Hn. By Theorem 1 there
is a path (P2giPf1)t from P&JPr1 to the identity map on P2(C2). We
now define ht e K'n by
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ntP* on c2

[g1 outside C2.

The path from / to the identity map is now complete and Theorem 2
is established.

The spaces Hn and Kn are intermediate spaces to the topological
spaces of Alexander and Kneser, and the diffeomorphism spaces treated
by Smale. It is interesting to note that methods used in this paper
are related to methods used in the larger nondifferentiable spaces and
the smaller differomorphism spaces. Alexander's mapping is altered to
give Theorem 1, while Theorem 2 parallels Smale's work.
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