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Three out of the four theorems proved in this paper deal
with the location of the zeros of a polynomial P(z) whose
zeros 2;,1=1,2,..--,n satisfy the conditions [2;| <1, and

n . 2?2=0for p=1,2,---,1. One of those estimates is

i=1%
P P& 1. l+1

P P{) z [2{(Jz [+t — 1)

for |z| > 1.
The fourth result is of a different nature. It refines, in
particular, a theorem due to Enrestrom and Kakeya., It is

shown that no zero of the polynomial h(z) = >;_,b:2* lies in

the disk
_ Be~i0 1
lz Gy Fr1’
where 5 = maxp-, |h/(2)|/max,-, |hz)|, and max,-, |k{z)]| =
[ h(e®f)|.

We generalize and strengthen certain well-known results due to
Biernacki [1], Dieudonné [3, 5], and Kakeya [8].

We use repeatedly a recent result due to Walsh which is a gener-
alized form of an earlier theorem of his [10]. It concerns the case
in which all the zeros of a polynomial lie within a certain distance of

their centroid.

THEOREM 1. Let h(z) = 37, b2"(b, complex),

max | #/(2) |
— lzl=1

" max (@)’

max,., | k()| = | h(e®) |, and let Cy be the disc |z — Be /(B + 1)| <
1/(B + 1), then no zero of h lies in C,.

Proof. Consider the function F(z) = e~**h(ze"’)/m, where h(e®) =
me*. Then F satisfies the conditions, | F'(z)| <1 in |2]| <1, F(1) = 1.
Let z,—lasn—oo,0<2,<1,andlet ¢ = lim, ..[(1 — | F(z,) )/ — z,)].
Then < | F'(1)|. It follows readily (see [2] p. 57) that

Hm [(1 — | F(w,) /A — z)] = F'(1) = OO0 (e)/m = [ 1'() |/m .
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We apply now the following result due to Julia [2]: If a function f
is regular in the unit disc and |f(2)]| <1 for |z} < 1, and there exists
a sequence of number z,,+++,2,, « -+ such that lim,_..2, =1, lim,_.. f(2,)=

L, lim, o [(1 — [ f(2,) D/(L — |2, ])] = @ then ¢
11— f(F 11—z
(1) 1"lf(z)|2§a1—lz|2 for |z] <1.

In (1), set f(z) = F(2), @ = | h'(¢) |/m. If F(z) = 0 and |2,| < 1, then
1 —129/11 — 2|* = a, which is equivalent to ¢~*2,¢ C,. Sincea < 8
it follows that Czc C,; hence e¢~%%,¢ Cps, which concludes the proof.

’

COROLLARY 1. Let h(z)= >7-,b,2%,b,>0. Then 8= 37_ kb,/S\2_.b,,
and no zero 18 i1 the disc

i lﬂbk ﬁ: blc
k=0 < k=0

z .
S G+ Db |3 (6 + b,

In particular, if b, is o strictly increasing sequence, them all the
zeros of h(z) lie in the complement of Cs; with respect to the unit
disc. This makes more precise the theorem of Enestrom and Kakeya

[8].

In a recent paper, Tchakaloff [9] (see also [7]) has proved that if
all the zeros of the polynomials

(2) Pu?) = a®2" 4« 4 ali(a® > 0,k =1, -+, m)

lie in the unit disc and if 4, > 0(k =1, -+, m), then all the zeros of
the polynomial >, A, P.(z) lie in the disc |z| = 1/sin (7/2n), and that
this is the best possible result. We prove a more precise result in
the case where there is more information about the zeros of P,(z).

THEOREM 2. Let the polynomials P, (2)(k =1, -+, m) of the form
(2) have all their zeros z,(1 =1,-<, mk=1,.--,m) in the unit
disc and let A, >0k =1, ---,m). Suppose that >, z5 =0 for
p=1, -, k=1, ---,m). Then all the zeros of the polynomial
Sm AGPL(2) lie i the disc |z| < (sinw/2n)~"N, For values of the
form n=(+1)r, the exact bound does not exceed (sin (w(l+1))/2n))=/"+",

Proof. Without loss of generality we may assume that ol = 1.
By a recent result due to Walsh [11] the polynomials P, satisfy the
equality P,(2) = (z — @.{2))", where |p,(2)| <|z|™* for |z|> 1. Let
¢ be a point outside the unit disc at which the cirele |z| = [{ ]|
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subtends an angle ¥. On the circle |2| = |{]|™* there exists a point
a, such that 0 < arg ({ — @,)/(C — a)) £ ¥, and

(3) S APRO =€ -3 452

=1 =1 {—a

Y

One deduces from equation (3) that
S AP £ 0 T <
k=1 n

For ¥ = n/n, sin (7/2n) = |{|~**Y, This proves the first part of the
theorem. The example A, = A, =1, m = 2, P(z) = (""" + )", Py(2) =
(" + )", where ¢t = iexp{(in/2n), proves the second part of the
theorem, since in this case the polynomial P,(z) + P,(z) has the zero

z = [sin _____n(l + 1) ]MWH) .

n

Dieudonné has proved [3], (for a different proof see [4]), that if the
polynomial P has all its zeros in the closed unit dise, then

(4) 2o o). L,
() Pz lz| —1

for |z] > 1.

We give a short proof of (4), which at the same time yields a stronger
inequality in the case where the centroid of the zeros of P is at the
origin.

THROREM 3. If all the zeros z,(t =1, ---,n) of the polynomial
P(2) lie in the closed unit disc and if >, 2zb =0k =1, ---,1), then
Jor |z]| > 1 the following sharp estimate holds

(5) Pre) P 1o  1+1
P'@) Pl 2zl |zl(zl"—1)

Inequality (5) holds also for 1 =0, in which case the second condition
1mposed on the z, is to be omitted.

Proof. By a recent result due to Walsh [12], there exists &
function @(z), | p(z)}| < |2z]7", such that for |z| > 1
’
(6) P'(z) n

PR z—o9@k)
An estimate due to Goluzin [6], applied to ¢ yields the inequality

(7) 1MMg#$la4¢wu

z*—1
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for |z| > 1. Since by (6)

(8) P'z) Pz _ 1 _ 2(x) —29'(2)
P'z) Pl 2z 20z — o)

is follows, using (7), that

P”(z),_P’(z)__lpl 1[ lp@) | _Uz[' 1—[o@]
P'z)  Pr) =z [zILz]l —lp@] (2" —1]|z] — |9 |

fiA

It remains to prove the inequality

1 2
(9) @ la¥ 1 xé l+1
a—x at—1la—u attt —1

forall 0=z =<a7!, and a > 1.

If we denote the left hand side of (9) by f(x), then f(a™') =
(I +D/(a** —1), and f'(x) = 0 provided the function g(x) = o —a +
la'(x® — 2ax + 1) is nonnegative. Since g¢'(z) = 0 it is enough to show
that h(a) = g(e~") is nonnegative. Indeed one verifies that h(l) =0
and h'(a) > 0 for all a > 1.

The particular case P(z) = 2" — 1, I = n — 1, shows that the bound
(5) cannot, in general, be improved.

The result due to Dieudonné follows from (7) and (8).

Finally, we discuss a problem raised by Biernacki [1], which was
also treated by Dieudonné [5], namely that of determining a region
containing all but, possibly, one zero of the polynomial aP(z) + P'(2)
for all complex a. Each of the above authors has proved that if all
the zeros of P lie in the unit dise, then the concentric disec of radius
2!2 ijg the smallest concentric disc that has the above mentioned proporty.
Assuming additional information about the zeros of P, we obtain a
smaller disec for all but possibly I -+ 1 zeros of the polynomial 2'P(z)+
aP'(z).

THEOREM 4. If all the zeros z,(i =1, ---,n) of the polynomial
P(z) lie in the closed unit disc and if >y 2b =0k =1, -+, 1), then
for all complex a at least n — 1 zeros of the polynomial 2'P(z) + aP'(z)
lie in the disc |z| < 2V,

Proof. Proceeding as in the proof of Theorem 3, we have

P'(z) _
P(z)

"
z—oz)

a
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satisfied by any zero of the polynomial z'P 4 aP’ which exceeds 1 in
modulus. Set g(z) = z7'p(1/z), w = 2'** and A(w) = ¢g(z). Then |g(z)| < 1
if |2] <1 and

(10) 9(z) = gﬁ— +oan
(11) hw) =L + an .
w

If for some a the polynomial z2'P + aP’ has at most # — 2 Zzeros in
the disc [z| < 2Y®¢+ " then equation (10) has at least I 4+ 2 roots in
the disc |z| < 274¢%+  and hence equation (11) has at least two roots
in the disec |w| < 27*, This was proved to be impossible in [5]
Theorem 4 is sharp for all | and # of the form » = 2k(l + 1), k=
1,2, ---. The upper limit is attained by the zeros of the polynomial

P(Z) —_ (zzl+2 — Qlizgl1 - 1)7»/(2(l+1)) .
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