Pacific Journal of

Mathematics

ON SIMPLE ALGEBRAS OBTAINED FROM HOMOGENEOUS
GENERAL LIE TRIPLE SYSTEMS

ARTHUR ARGYLE SAGLE




PACIFIC JOURNAL OF MATHEMATICS
Vol. 15, No. 4, 1965

ON SIMPLE ALGEBRAS OBTAINED FROM
HOMOGENEOUS GENERAL LIE
TRIPLE SYSTEMS

ARTHUR A. SAGLE

We continue the investigation of the simple anti-commuta-
tive algebras obtained from a homogeneous general L.t.s. In
particular we consider the algebra which satisfies

(1)  J&,y,2w=Jw,x, yz) + J(w,y,2x) + J(w, 2, zy) .

The usual process of analyzing a nonassociative algebra is to
decompose it relative to elements whose right and left multi-
plications are diagonalizable linear transformations e.g.
idempotents or Cartan subalgebras. In this paper we show
that such a process yields only Lie algebras and indicates the
difficulty in finding any non-Lie multiplication table for a
simple anticommutative algebra satisfying (1).

A general Lie triple system [2] is an extension of a Lie triple
system used in differential geometry and Jordan algebras. A general
L.t.s. may be regarded as an anti-commutative algebra A with a
trilinear operation [z, y, 2] so that the mappings D(x, ¥):z— [z, ¥, 2]
are derivations of A which generate a Lie algebra, I(A4), under com-
mutation satisfying certain natural identities. A homogeneous general
L.t.s. is a general L.t.s. for which the operation [z, ¥, 2] is a homo-
geneous expression in the products of x,y and z; that is, using anti-
commutativity, [x,¥,2] = axy-z+ Byz-x + vzx-y for some fixed
«a, B,v in the base field. From [1] we see that if A is a homogeneous
general L.t.s. over a field of characteristic zero which is either an
irreducible general L.t.s. or I(A)-irreducible or a simple algebra, then
A is a Lie or Malcev algebra or satisfies

(1) J(@,y, 2)w = J(w, x, y2) + J(w, y, 22) + J(w, 2, xY)

where J(z,9,2) =xy-2 + yz-2 + 2z -y. The main result of this paper
is the following theorem.

THEOREM. If A is a simple finite dimensional anti-commutative
algebra over a field F' of characteristic zero which satisfies (1) and
if A contains a mnonzero element w so that right multiplication by
u, R,, 18 a diagonalizable linear transformation, then A is a Lie
algebra.
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2. Proof of theorem. For any anti-commutative algebra we
have the identity

wd (%, ¥, 2) — 2d (y, 2, w) + yJ (2, w, ®) — 2J(w, ©, ¥)
= J(w, x, y2) + J(w, y, zx) + J(w, 2, 2Y)
+ J(wx, y, 2) + J(wy, 2, x) + J(wz, x, y) .
But using (1) we also have
wd(z, Y, 2) — v (¥, 2, w) + yJ(z, w, ¥) — 2J(w, », y¥)
= —2[J(w, z, y2) + J(w, ¥, z2) + J(w, 2, xY)
+ J(we, ¥, 2) + J(wy, 2, x) + J(wz, 2, y)] .
Thus using the two preceding identities we have
J(w, 2y, 2) + J(w, yz, x) + J(w, 2, y)

2
(2) = J(wx, ¥, 2) + J(wy, 2, x) + J(wz, ®, ¥) .

Now let % == 0 be an element of A so that RB,:« — zu is a diagonali-
zable linear transformation. Then R, = 0, for this implies that the
one dimensional subspace #F' is an ideal of A and therefore equals A.
Thus A? = 0, a contradiction to the simplicity of A. Since R, acts
diagonally in A we may write

A=A, %Aa
where
A, ={xecA: xR, — M) =0}.
We shall now prove
(3) AA,CAyp.
For let v ¢ A,, y<€ Ag, then from (1)

J(u, z, YR, = J(u, u, vy) + J(u, z, yu) + J(u, y, uw)
== IBJ(u; €, ?/) - a’J(u, Y, fX})
- (a + B)J(u, X, y) .

Thus J(u, 2, y) € A, s and therefore
2yYy(R, —(@a+ B))=ay-u+yu-x +ur-ycAop.

From this zy(R, — (¢ + B8)I)* = 0 and setting xy = 32,€ Ay D Siaso Au
we see by the diagonal action of R, that xye A,,5. In particular (3)
shows A, is a subalgebra of A.

Next we shall show
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(4) J<Aa;AﬁyAv):0 or a+,8+7:0

for any characteristic roots «, 8,7 of R,. Let we A, yec A zc A,
then from (3) J(z, ¥, ) € Asrpry and therefore

(a+ B+ 7,y 2 =J@ vy, )R,
= J(u, x, y2) + J(u, ¥, 22} + J(u, 2, xY)
=—ar-yz + @+ L +Ne-yz+ B+ Nyz-x
—By-zx+(@+B+My-2x+(a@+ ey
— 22y + (@ + B+ 7wy + (@ + Bay-z
=0.

and this equation proves (4).
from (1) and (3) we have

J(Ao; A, AYA,C J(A,, Ay, Ay
and for a == 0 we have from (1), (3) and (4},

J(A09 AO’ AO)Aa C J(Aay AO: AO)
=0.

Thus J(A,, A, A)AC J (A, A, A,) and therefore J(4,, A, 4,) is an
ideal of A whien is contained in A, = A. Since A is a simple algebra
this yields

(5) J(A, Ay, A) = 0.

Next we shall prove that if « is a nonzero characteristic root so that
~a is also a characteristic root, then

(6) J(Aa’A—a;AO):()-
For using (1), (3) and (5) we obtain

J(A., A_,y, AYA,C I (A, A_., AY)
and for any B # 0 we also obtain
J(Aa’ A—a; AO)AB - J(AB’ Aay A—aAO)
+ J(AB’ A—a; AoAa)
+ J(AB; AO’ AaA—a)
CJ(Ap, Aoy A_o) + J (44, Ay Ad)
=0,
also using (4). Thus as in the proof of (5), J(A4., A_., A,) is an ideal of

A which must be zero. Adopting the usual convention that if « is a
characteristic root but —a is not, then A_, = 0 we see that (6) holds
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for any characteristic root a.
Next let

B=2>AA,.D> A,
@70 a0

then if 8+ 0 we see from (3) that BA,c B. If 8 =0, then from
(6) we obtain (A,A_,)A,C A,A_, and therefore BA,c B. Thus B is
an ideal of A and therefore B=0 or B=A. If B=0, then R, =0,
a contradiction. Therefore we have

(7) A:#ZOAaA_H@%Aa.

Now from (4) and (6) we have for any characteristic roots 8 and « = 0,
J(A. A_oy, Ag) = 0 and therefore

(8) J(An A,y A)=0  (@+=0).

We ghall use (7) and (8) together with the following lemma to prove
A is a Lie algebra.

LEMMA. Let N ={xc A:J(x, A, A) = 0}, then
(i) J(a, b, A) = 0 9mplies abe N;
(il) N s an tdeal of A which ts o Lie algebra.

Proof. Clearly (ii) follows from (i). So let a,be A be such that
J(a,b, Ay = 0 and let w,ze A. Then from (1) and (2) we have

0 = wd(a, b, ?2)
(9) = J(w, ab, 2) + J(w, bz, a) + J(w, za, b)
= J(wa, b, 2) + J(wbd, z, a), using (2) .

Now interchanging z and w in this last equation we obtain 0 =
J(za, b, w) + J(2b, w, a) = J(w, bz, a) + J(w, 2a,b) and using this in
(9) yields J(ab, w, z) = 0; that is, abe N.

To show that A is a Lie algebra, suppose it is not. Then from
the lemma N = 0 and from (8) A,A_,C N = 0. Thus from (7) A =
St A, and therefore A, = 0; this contradicts 0 # u € A,.
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