
Pacific Journal of
Mathematics

ISOMETRIC IMMERSIONS OF MANIFOLDS OF
NONNEGATIVE CONSTANT SECTIONAL CURVATURE

EDSEL FORD STIEL

Vol. 15, No. 4 December 1965



PACIFIC JOURNAL OF MATHEMATICS

Vol. 15, No. 4, 1965

ISOMETRIC IMMERSIONS OF MANIFOLDS
OF NONNEGATIVE CONSTANT

SECTIONAL CURVATURE

EDSEL STIEL

Let Md denote a C°° Riemannian manifold which is d-
dimensional and complete. Our first result states that an iso-
metric immersion of a flat Md into (d + &)-dimensional Euclidean
space, k < d, is ^-cylindrical if the relative nullity of the immer-
sion has constant value n. This result was obtained by O'Neill
with the additional hypothesis of vanishing relative curvature.
We next consider the case in which Md and Md+k, k < d, are
manifolds of the same constant positive sectional curvature.
In this case we show that an isometric immersion of Md into
Md+k is totally geodesic if the relative curvature of the im-
mersion is zero on a certain subset of Md.

Let Md and Md+k be C°° Riemannian manifolds of the same con-
stant sectional curvature C, Ma being assumed complete and k < d.
Let ψ: Md —> Md+k be an isometric immersion. The character of such
immersions has been studied in [4] and [5] in terms of what Chern
and Kuiper call the index of relative nullity of ψ [2]. This func-
tion, v, assigns to each meM the dimension of ^ " ( m ) , the subspace
of vectors x in the tangent space Mm such that Tx — 0. The linear
difference operators Tx act on Mψ{m) and contain the same informa-
tion as the classical second fundamental form operators Sz where z is
a tangent vector to M orthogonal to dψ(Mm) [1]. In fact Tx is char-
acterized by its skew-symmetry and the equation Tx(z) — dψ{Sz{x)).
Our first theorem concerns the case in which Md is flat and Md+k —
Rd+k, d + k dimensional Euclidean space. It states that when v is
constant on Md the immersion ψ is 'cylindrical'. We next investigate
the corresponding situation for C > 0.

We use essentially the notation in [4]. In particular we identify
Md with ψ(Ma) when it seems safe to do so. Let N denote the bundle

of normal fc-frames of M relative to ψ; that is

N = {(m, E)\me M and E is a k-ίrame (orthonormal set of k

vectors) of Mψ{m) orthogonal to dψ{Mm)} .

The Riemannian connection of Md+k induces a natural connection on
N. The curvature form of this connection is called the relative
curvature of ψ. We say that ψ: Md —> Rd+k is n-cylindrical provided
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M and ψ can be expressed as Riemannian products Ma — Bd~n x Rn

and ψ — ψ x 1 where ψ is an isometric immersion of Bd~n in Rd+k~n

and 1 is the identity map of Rn. We can now state our first theorem
precisely. This result was obtained by O'Neill as Theorem 2 of [4] but
with an additional hypothesis, namely, the assumption of zero relative
curvature. We shall use a similar assumption in our Theorem 3.

THEOREM 1. Let Md be a complete, flat, C°° Riemannian mani-
fold. An isometric immersion ψ: Md —* Rd+k is n-cylindrical if the
relative nullity has constant value n.

We summarize some results applicable to an isometric immersion
between two manifolds of constant curvature C. Let ^V^m) be the
orthogonal complement of ^~(m) in Mm. From [5] we have: If n
denotes the minimum value of v, then n ^ d — k and G, the open
subset of Md on which v = n, is foliated by complete totally geodesic
subspaces (the leaves of Λ^) which are also totally geodesic relative
to ψ. Also there exists for any meG an xe<yV"L{m) such that Tx

is injective on ^A^L(m). The two cases of interest to us are:

Case 1. G = Md (i.e., v is constant), Md+k = Rd+k (C = 0) and

a = oo (see below).

Case 2. C> 0 and 0 < a < τr/4τ/C~.

The parameter a appears in the following lemma. Let 7: ( —α, a)—> L
be a unit speed geodesic in a leaf L of ^K in G. Then there exists
a frame field E — {Ely , Ed+k) on a neighborhood or 7 in G such
that:

1. The geodesic 7 is an integral curve of Eλ;
2. Each integral curve of Et is a geodesic of M;
3. The vector fields Eu , En are contained in <yK, En+1, , Ed

in ^K1, and Ed+1, •• ,£Γ

d + A ; are contained in the orthogonal comple-
ment of f(Mm) in Mψ{m);

4. The frame E is parallel on 7. The construction for this
lemma is contained in Lemma 1 of [5], except we use the additional
fact that the leaves of Λ" are Rn planes in Case 1 for a = 00. We
pull the connection form φ of the frame bundle of Md+k down to G
by way of the frame field E. Using the following index convention,

1 rg α, b ^ n n + 1 ^ q, r, s ^ d

l ^ i , j ^ d ; d + l^a,β^d + k,

we get
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(connection forms of M),

τia — Φia°dE (Codazzi forms),

Θaβ — Φaβ°dE (normal connection forms).

A set of linear operators on <yi<rL dependent on the frame field E can
be defined by

PEa(Es) — Σrφra(Es)Er .

From the second structural equation and the properties of the frame
field E one can show that the matrix P(t) of JP r u ) satisfies the dif-
ferential equation P' — —P2 — CI on ( — a, a) where I denotes the
(d — n) x (d — n) identity matrix. See Lemma 3 of [5]. Our proof
of Theorem 1 hinges on the central result from [4] which states that
if for all m e Md and x e ^/~(m) we have that Px = 0 then the immer-
sion is n-cylindrical. Theorem 1 can now be easily proved with the
help of the following lemma which is applicable in both Case 1 and
Case 2.

LEMMA 1. Let me L. If xe Λr{m) and y e ^V±(m) then TPχ{y) =
TyoPx on

Proof. Since L is complete there exists a geodesic τ : ( — α,α)—>L
with τ(0) = m and a frame field E as defined above in a neighborhood
of 7. From TEi(Ej) = Σaτaj(Ei)Ea and the definition of ^K we get
that τaa = 0. Using this fact with the Codazzi equation for τaa we
have

0 = dτaa = - Σ ^ A τίa - Σβτaβ A θβa = Σqφaq A τqa .

This implies that

Σa,qφqa(Es)τaq(Er)Ea = Σa>qφqa(Er)τaq(Es)Ea

or that

TEr(PEa(Es)) = TEs(PEa(Er)) .

Hence for x e <yt^{m) and y, z e ^^^{m) we have

Ty(Px(z)) = TZ(PM) - TPχ{y){z),

the last equality above following from the symmetry of the second
fundamental form operators.

2* Proof of Theorem 1* We shall show that Px = 0 for x e ^
m e Md. We may assume x is a unit vector and 7 is a unit speed com-
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plete geodesic of the leaf through m with τ'(0) — x. By a previous
remark we may pick ye ^V^m) such that Ty is injective on ^VL(m).
Then Λ^L + Ty(^ί^x) is invariant under both Ty and TPχ{y). Hence
the 2(d - n) x 2(d - n) matrix of Ty \ (^ί^L + Ty{<yK*x)) can be re-
presented by a (d — n) x (d — n) matrix A in the upper right hand
corner, — A* in the lower left hand corner and zeros elsewhere. If
B is the analogous block for TPχ{y) then Q = —ABι will be the matrix
of TyθTPχ{y)\^/K'λ-. The difference operators Ty and TPχ{y) commute
on Mm since M is flat and hence we have ABι — BA\ By Lemma 1,
P. = 2V1 o TPχ{y) I ̂ rL and hence P(0) = ( A " 1 ) ^ . Let

Since Q is symmetric so is R and therefore P(0) has the same (real)
eigenvalues as R. These eigenvalues satisfy \[ = — λ | on the real
line (since P satisfies this equation by a result stated above) and
hence each λfc = 0. Thus R — 0 and this implies P(0) = 0 which is
the desired result.

3* Positive curvature case* For completeness we include Corol-
lary 1 of [5] as

THEOREM 2. Let Ma and Md+k be C°° manifolds with the same
constant positive curvature C, Ma being assumed complete. Let ψ:
Ma —> Ma+k be an isometric immersion with 2k rg d. Then ψ is
totally geodesic.

As above let n denote the minimum value of v and let G consist
of the m e Md for which v(m) = n.

THEOREM 3. Let Md and Md+k be C°° manifolds with the same
constant positive curvature C, Md being assumed complete. Let ψ:
Md —> Ma+h be an isometric immersion with k < d. Then ψ is totally
geodesic if the relative curvature of ψ is zero on G.

Proof. The proof is by contradiction. If ψ is not totally geodesic
then n < d. Let L be a leaf in G and let me L. We first show that
for any xe ^/K*{m), Px is a symmetric operator and is independent of
the frame field used in its definition. Let ye<yy~L(m) such that Ty

is injective on ̂ V*L. Using a geodesic 7: (—β, a)—*L with 7'(0) = x
and Lemma 1 we have as in the proof of Theorem 1 that P(0) =
(A"1)*!?*. Since the relative curvature of ψ is zero we get from the
Ricci equation of the immersion that the Codazzi forms satisfy the
relation 2Yrαί Λ τiβ — 0. From this we conclude that Ty and TPχiy)
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commute on {df{Mm))L or AΈ = B*A. This equation implies that
P(0) is symmetric. From the first structural equation we have that

[Er, Es] = IUn{Es) - φsά

which together with the symmetry of Px implies [Er, Es] e ^yK1; thus
is integrable. For x e Λ^, Px is actually a second fundamental

form operator of the leaf through Λ^L and thus Px is independent
of the choice of frame field used in its definition.

From the completeness of L it follows that we can find a unit
speed geodesic 7 in L defined on the real line. Since M is of constant
positive curvature, 7 is a compact immersion and P r is a periodic
function on the real line. Let λ be one of the d — n real eigenvalue
functions determined by the symmetric operator Py,. We may assume
λ attains a maximum at m — 7(0). Let £ be a frame field as above.
Then λ must satisfy λ'(0) = -λ2(0) - C = 0 since P satisfies P' =
— P2 — CI on an interval containing 0β This implies λ(0) is not real,
which is the desired contradiction. Hence n ^ d or ψ is totally geodesic
on M.

As a Corollary we get a result of O'NeilΓs from [3]. Let Sd+1(C)
denote the sphere of curvature C

COROLLARY 1. Let Md and Md+1 he C°° manifolds with the same
constant positive curvature C, Md being assumed complete. Then any
isometric immersion ψ: Md-^ Md+1 is totally geodesic. In particular
if Md+1 = Sd+1(C) then any such immersion is an imbedding onto a
great sphere.

Proof. The vanishing of the relative curvature of ψ is trivial in
the hypersurface caseβ In case Md+1 — Sd'{1(C) we have that ψ(M) —
Sd(C)dSd+1(C). Letting Sd(C) denote the universal covering manifold
of Md and π the natural projection, we have that ψoπ is a local iso-
metry onto ψ(M). Hence ψoπ and therefore ψ is injective. Thus i/r
is an imbedding onto Sd(C).
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