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R. J. Koch proved that if X is a compact, continuously
partially ordered space and if W is an open subset of X which
has no local minima, then each point of W is the supremum
of an order arc which meets X— W. More recently he
extended this result to quasi ordered spaces in which the sets
E(x) = {y: x ^ y ^ x) are assumed to be totally disconnected
and W is a chain. He conjectured that the latter hypothesis
is superfluous, and we show here that Koch's conjecture is
correct.

As a corollary it follows that if X is a compact, continu-
ously quasi ordered space with zero (i.e., a unique minimal
element), if each set E{x) is totally disconnected, and if each
set L(x) = {y: y ^ x} is connected, then X is arcwise connected.

We begin by recalling a few definitions (see [1], [2], [3] and
[4]). We say that X — (X, Γ) is a continuously quasi ordered space
provided X is a Hausdorff space, Γ is a quasi order (= reflexive,
transitive relation) on X and the graph of Γ is a closed subset of
X x X. We identify Γ with its graph and regard the symbols x g
y, and x Γ y and (x, y) e Γ as synonyms.

A chain of a quasi ordered space X is a subset C of X such that
a g b or b gΞ a holds for each a and b in C We also define

L(a, Γ) = {xe X: (x, a)eΓ} ,

M(a, Γ) = {x e X: (a, x) e Γ} ,

E(a, Γ) = L(a, Γ) n M(a, Γ) ,

for each ae X. It is also convenient to define

I(α, 6, Γ) = M(a, Γ) n L(δ, Γ) ,

the closed "interval" from a to b. Where there is no ambiguity we
shall write (L(a) (resp., M(a), E(a), I(a, &)) for L(a, Γ), (resp., ikf(α, Γ),
£7(α, Γ), I(α, &, Γ)). It is well known [3] that if X is a continuously
quasi ordered space then the sets L(α), ikf(α), E(a) and I(α, 6) are
closed and, if X is compact, then X contains a minimal element, that
is, an element m such that L(m) — E{m) is empty.

1 Received September 2, 1964. Presented to the American Mathematical Society,
November 14. 1964. This research was supported by a grant from the National
Science Foundation.
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A subset Y of the quasi ordered space (X, Γ) is said to have no
local Γ-minima if, for each x e Y and each neighborhood U of x, the
set

Yf]Ur\ L(x, Γ) - E(x, Γ)

is nonempty. This definition is due to Koch [2].
In case the relation Γ is a partial order, it is known that a con-

nected chain joining two distinct points is an arc. (Here we use the
term arc to describe a continuum with precisely two non-cutpoints.)
An arc which is also a chain is termed an order arc.

The following two lemmas will be of later use.

LEMMA 1. Let X be a compact, continuously quasi ordered space,
let a and b he members of X, and let K be a closed subset of X such
that I(a, b) (Ί K = 0. Then there exist open sets U and V such that
ae U, be V and for each a1 e U and br e V it follows that I(a', bf) D
K=0.

Proof. Suppose, on the contrary, that for all neighborhoods U
and V of a and b9 respectively, there exists ar e U and 6'e V such
that I(a' V) Π Kφ 0. Then

r n (ϋx K) n (Kx Ϋ)ΦO.

These sets form a family of nonempty closed sets with the finite
intersection property and hence their intersection is nonempty:

Γ n ({a} x K)Π(Kx {b}) Φ 0 ,

that is to say, I(a, b) Π K Φ 0, contrary to the hypothesis.

LEMMA 2. If R is an open subset of the compact, continuously
quasi ordered space X, then the set

F = {(α, ί > ) e l x X: I(a, b) - R Φ 0}

is closed.

Proof. If (a, b)$F then I(a, b) Π (X - R) = 0. By Lemma 1,

there are open sets U and V with ae U and be V such that for each
a'eU and Ve V it follows that I(a', 6') c R, and hence (U x V) Π
F — 0. Therefore, F is closed.

2* Koch's theorem for quasi ordered spaces* The crux of
our proof is embodied in the following theorem.

THEOREM. Let X = (X, Γ) be a compact, continuously quasi
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ordered space and let W be an open subset of X. If

(i) E(x, Γ) is totally disconnected for each xe X,
(ii) W has no local Γ-minima, then X admits a minimal quasi

order which has a closed graph and satisfies (i) and (ii). Moreover,
this minimal quasi order is a partial order.

Proof. Let {Γa} be a maximal nest of quasi orders on X such
that each Γa has a closed graph and satisfies (i) and (ii), and let Γ —
Π {Γa}. Clearly (X, Γ) is a continuously quasi ordered space and
E(x, Γ) is totally disconnected. We will show that W has no local
/^-minima.

Let xe W and let U be a neighborhood of x; since W is open
and E(x, Γ) is totally disconnected, we may assume that U a W and
that E(x, Γ) (Ί U is closed. Since X is normal there exist open sets
V and R such that

E(x,Γ) n Ud Va V(Z U ,

X- UdRdRciX- V.

For each a, the compact set L(x, Γa) Π V has a /^-minimal element
which we denote xa. And since "FT has no local /Vminima there exists

ya e (X - R) ΓΊ L(xa, Γa) - E(xa, Γa) .

It follows that

ya e L(x, Γa) - R U V

so that the sets L(x, Γa) — R U V are compact, nonempty and nested.
Consequently there exists

yeL(x,Γ)-R)j V

and it is clear that y£E(x9 Γ). That is, W has no local Γ-minima.
Now suppose that Γ is not a partial order; then there exists a

nondegenerate set E(x9 Γ). Since E(x, Γ) is compact and totally
disconnected, there exist nonempty, closed and disjoint sets A and B
whose union is E(x, Γ). Since X is normal there exist disjoint open
sets P and Q such that A c P and B c Q. Let

F = {(α, 6): /(α, 6) - P U Q ̂  0} .

By Lemma 2, ί7 is a closed subset of X x X and hence

A = Γ - ((Px Q) - F)

is also closed. Since P and Q are disjoint, Δ is a reflexive relation
on X.



1432 L. E. WARD, JR.

We claim that Δ is a quasi order. For suppose p Δ q and q Δ r
but (p, r)e(X x X) - Δ. Now (p, r)eΓ so that (p, r)e(P x Q) - F
and hence qe P or qeQ. lί qe P then, since r e Q and (q, r)e Δ we
infer that (q, r)eF and thus I(q, r) - P U Q Φ 0. But J(?, r) c J(p, r)
and hence I(p, r) — P [j Q Φ 0, contrary to the fact that (p, r)e(P x
Q) — F. A similar contradiction ensues if q e Q, and thus J is a quasi
order.

Since Δ c Γ it is obvious that each set E(x, Δ) is totally discon-
nected. Now suppose ze W and that 0 is a neighborhood of z, 0c TΓ.
If ze W- Q then

L(z, Δ) = L(z, Γ)

and hence there exists

7/eO n L(z, Δ) - E(z, Δ) .

And if zeQ, the fact that W has no local Γ-minima insures the
existence of

yeOΠ Q ΓΊ L(z, Γ) - E(z, Γ) .

But i / ί P implies ye L(z, Δ), so that in any event W has no local Δ~
minima.

Finally we note that Δ contradicts the minimality of Γ, for if
ae A and be B then (α, b)e Γ — Δ. Therefore Γ is a partial order.

COROLLARY 1. Let X be a compact, continuously quasi ordered
space and let W be an open subset of X. If conditions (i) and (ii)
of the theorem are satisfied, then each point of W is the supremum
of an order arc which meets X — W.

Proof. By the preceeding theorem we may assume that the quasi
order is a partial order. Thus Koch's theorem for partially ordered
spaces applies.

An element 0 of the quasi ordered space X is a zero of X provided

0 = .E(0) = Π {L(x): xeX} .

COROLLARY 2. If X is a compact, continuously quasi ordered
space with zero, if each set E(x) is totally disconnected and if each
set L(x) is connected, then X is arcwise connected.

Proof. Let W = X — {0}; the connectedness of the sets L(x)
guarantees that W has no local minima and therefore each point of
W lies in arc containing 0.

Following Koch we say that a subset C of the quasi ordered space
X is biconnected if C is connected and if each of the sets E(x) Π C is
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connected.

COROLLARY 3. Let X be a compact, continuously quasi ordered
space and suppose there exists a e X such that

E(a)= n {L(x):xeX} .

If X — E(a) has no local minima then each element of X can be
joined to E(a) by a biconnected chain.

Proof. Let Z denote the compact, continuously partially ordered
space which is obtained when E(x) is identified with a point, for each
xe X. Let Φ(X) = Z be the canonical quotient map and let

be the monotone-light factorization of φ. It is easy to see that Y
inherits a quasi order from Z which has a closed graph and is such
that E(y) is totally disconnected, for each yeY. Moreover, Y-
m(i?(a)) has no local minima and hence, by the theorem, there are
order arcs joining points of Y to m(E(a)). Since m is monotone, the
corollary follows at once.
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