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Let (R, X, +) be a commutative ring with unit 1, and let
K = {plt p2, •} be a transformation group in R. (R, x , +)
is called a ring-logic, mod K essentially if the " + " of R is
equationally definable in terms of the "K-logic" (R, X, />i, /?2, )•
The Boolean theory results by choosing K to be the group
generated by x* = 1 — x (order 2, x** = x). The following
result is proved: Let n = pi pt be square-free, and let Rn

be the residue class ring, mod n. Let, ~, be any transitive
0 —> 1 permutation of RPi(i = 1, , t). Let, ~, be the induced
permutation of Rn defined by (xlt , cc*)~ = (ccf, , xΓ),
Xi e RPi{i — 1, •••,£), and let iΓ be the transformation group
in J?w generated by, ~. Then (i?w, X, +) is a ring-logic, mod
K. An extension of this theorem to the case where n is
arbitrary is also considered. The present proofs use the
Fermat-Euler Theorem as well as a generalized form of the
Chinese Residue Theorem.

The motivation for the study of ring-logics stems from the familiar
equational interdefinability of Boolean rings (R, x , + ) and Boolean
logics (^Boolean algebras) (R, | Ί , *) [5]. In a series of recent publi-
cations ([1]~[4]), Foster raised this equational interdefinability, as well
as the entire Boolean theory, to a more general level. In particular,
Foster showed [2; 3] that any p-ring with unit (and more generally,
any pk-τing with unit) is a ring-logic, modulo certain suitably chosen
groups. Furthermore, the author proved [6] that Rn, the residue class
ring, mod n, is a ring-logic, modulo the "natural group" (generated by
x~ — 1 + x). Our present object is to further extend these results
by considering certain transformation groups in Rn of rather general
nature, and with respect to which (Rn, x , + ) is a ring-logic (see
Theorem 5).

1* The ring of residues mod pk+ Let (Rpk, X, + ) be the residue
class ring, modpfe, where p is prime and k 2̂  1. Let G denote the
group of units in Rpk. Then, as is well known, the order of G is
φ(pk) — pk — pk-\ where φ(n) is the familiar Euler φ-ίunction ( = number
of positive integers which do not exceed n and which are relatively
prime to n). Let, ~, be a permutation of Rpk. We call, ~, a transitive
0—* 1 permutation if (i) (Γ = 1, and (ii) for any elements a, β in Rpk,
there exists an integer r such that oΓ* — β, where αΓr = ( -((αθ~)~ )~
(r-iterations).
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We recall from [4] the characteristic function δ^x), defined as
follows: for any given μe Rpk, δμ(x) = 1 if x — μ and δβ(x) = 0 if
x Φ μ. Following [4], we also define: α x j ~^(pΓ x δ~)~, where,
~, is the inverse of the 0 —• 1 permutation, ~. One readily verifies
that α χ _ 0 = 0 x _ α = α. Hence, we have the following "normal
expansion formula" [4]:

(1.1) f(x,y, . . . ) =

In (1.1), α, /S, range independently over all the elements of Rpk
while x, y, are indeterminates over i2p&. Also, ^ω^κai denotes
ai x _ ̂ 2 x _ > where α ,̂ α2, are all the elements of R.

We now have the following

LEMMA 1. Let, ~, be any transitive permutation of Rpk, and let
K be the transformation group in Rpk generated by, ~. Then all the
elements of Rpk are equationally definable in terms of the K-Ίogic

(Rpk, x , 1 .

Proof. Since, ~, is a transitive permutation of Rpk, therefore,
Rpk = {0, (Γ, (Γ2, , (Γ**-1}. Similarly, we have, xx~x~2 aΓ^" 1 = 0,
for all x in Rpk. The last equation shows that 0 (and with it
0~, 0^2, , (Γ^"1) is expressible in terms of the iΓ-logic, and the lemma
is proved.

LEMMA 2. Let G = {1, ζ2, ζ8, , ζφ) be the group of units in the
residue class ring (Rpk, x , + ) . Let, ~, be a transitive 0 —• 1 permu-
tation of Rpk satisfying 1~ = ζ2, CΓ = ζ3, , ζ^-i = ζ^, δ^ί otherwise,
~, is entirely arbitrary. Let K be the transformation group in Rpk
generated by, ~. Tfce^ βαcfc characteristic function δμ,(x), μ e Rpk, is
equationally definable in terms of the K-logic (Rpk, x , ~).

Proof. Since, ~, is transitive, therefore, there exists an integer
r such that μ~r — 0. Now, one readily verifies that

~r+2x~r+3Sμ{x) = (x~r+1x

since, by the Fermat-Euler Theorem, apk-pk~ι = 1 for all a in G. This
proves the lemma.

T H E O R E M 3. Let K,~, be as in Lemma 2. Then the residue
class ring (Rpk, x , + ) is a ring-logic, mod K.

Proof. By (1.1), x + y = Σι2$eRpk if* + ί ) ( W Λ ) ) . By Lemma
1 and Lemma 2, each of a + β, δa(x), and δβ(y), is expressible in terms
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of the Z-logic. Hence, the " + " of Rpk is equationally definable in
terms of the i£-logic. Next, we show that (Rpk, x , + ) is fixed by
its if-logic. Suppose that (Rpk, x , +') is another ring with the same
class of elements Rpk and the same " x " as (Rpk, x , + ) and which
has the same logic as (Rpk, x , + ) . To prove that + ' = + . But this
follows, since, up to isomorphism, there is only one cyclic group of
order ph.

2. The general case* In attempting to generalize Theorem 3 to
the residue class ring (Rn, x , + ) , n arbitrary, we need the following
concept of independence, introduced by Foster [4].

DEFINITION. Let {U19 •••, Ut} be a finite set of algebras of the
same species S. We say that the algebras U19 , Ut are independent
or satisfy the Chinese Residue Theorem, if, corresponding to each set
{Ψi} of expressions of species S, there exists a single expression X such
that Ψi — X (mod £/*) (i — 1, , t). By an expression we mean some
composition of one or more indeterminate-symbols x, is terms of
the primitive operations of U19 •••, Ut; Ψi = X(mod Ui) means that
this is an identity of the algebra Uim

As usual, we shall use the same symbols to denote the operation
symbols of the algebras U19 , Ut when these algebras are of the
same species. We now have the following

LEMMA 4. Let p19

m ,pt be distinct primes. Let, ~, be any
transitive 0 —> 1 permutation of RpHy and let Kt be the transformation
group in Rvn generated by, ~, (i = 1, , *). Then the Eulogies
(RpH, x , ~)(i = 1, m

 9t) are independent.

Proof. Let n = pi1 pfr and let E = xx~x~2 x~n-\ Let
pfrrii = n. Since (pfr, n{) — 1, therefore, there exist integers ri9 s{

such that ViΠi — s^1 = 1. Now, one readily verifies that

fl(mod Rpki) ,

(0(mod Rpkj)

To prove the independence of the logics {RPH9 X , Λ ), let {Ψ^ be a set
of t expressions of species x , ~; i.e., primitive composition of indeter-
minate-symbols in terms of the operations x , ~. Define

X = ψl(ύl x ^ . . . x ^ ψtωt .

I t is r e a d i l y verified t h a t Ψi = X ( m o d RvH)(i — 1, . . . , t), s ince α x j =
0 x _ α = α. T h i s p r o v e s t h e l e m m a .
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We are now in a position to consider (Rn, x , + ) in regard to the
concept of ring-logic. Indeed, let n = pϊ1 ••• pft, where the Pi are
distinct primes (i — 1, , t), and let G{ = {1, ζ ί2, ζ<s, , ζ^J be the
group of units in the residue class ring {Rp*i, x , + ) . For each i,
define, ~, to be a transitive 0 —> 1 permutation of RPH satisfying 1~ =
ζ*2f CtΓ2 = ζi s, , (Ci.Pi-iΓ = Ci^, but otherwise, ~, is entirely arbitrary,
and let K{ be the transformation group in RPH generated by, ~. Now,
it is well known that the residue class ring Rn is isomorphic to the
direct product of RPH, , Rpkt\

Rn ^ RPii x x jβpji (direct product), w = pfi pt

feί .

Furthermore, it is easily seen that by defining (xί9 , xt)~ = (a?Γ, *» #Γ)>
(a?!, , xt) e Rn, we obtain a transitive 0 —•> 1 permutation of Rn. Let
i£ be the transformation group in Rn generated by the above permu-
tation, ~. We now have the following

THEOREM 5. The residue class ring (Rn, x, +), n arbitrary, is
a ring-logic, mod K, where K is the transformation group in Rn

above.

Proof. Let n — pi1 p**, where the Pi are distinct primes (i —
1, •••,*). By Theorem 3, each {RPH, x , + ) is a ring-logic, modίQ,
where K{ is as defined above (i — 1, •••, t). Hence, for each i, there
exists an expression Ψ{ such that

%i + Vi = Ψi(%i> VC, x , ~), fo r all xi9 Vi in RPH .

But, by Lemma 4, the i^-logics (RP

JH, X , Λ ) are independent (i — 1, , t),
and hence there exists a single expression X such that X ~Ψ i (mod Λpfc<)
(i = 1, , t). Now, let x = (α ,̂ , a?t), 7/ = (ylf , yt) be any elements
of Rn(=RpH x ••• x i?p^) Since the operations are component-wise
in this direct product, therefore,

X(x, y; x , ~) = X((^, , a?,), (^, , yt); x , ~)

= (Xfe, y±; x , 1 , , X(a?t, ^ x , 1 )

= (^1(^1, Vύ X , ^), , ^ t^t , I/*; X , ~))

= («i + ί/i, , a?t + I/O

— x + y .

Hence, the " + " of Rn is equationally definable in terms of the jK-logic
(jβn, x , ~). The proof that (JBn, x , + ) is fixed by its if-logic follows
as in the "fixed" part of the proof of Theorem 3, since again, up to
isomorphism, there is only one cyclic group of order n. This completes
the proof of the theorem.
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We shall now take a closer look at the case where n = ^ • pt is
square-free. In this case the group Gi of units in RPi{ — field) is
precisely the set of all nonzero elements of RPi(i = 1, •••,£), and the,
~, described above (see paragraph preceding Theorem 5) for Rp. is now
simply any transitive 0 —> 1 permutation of Rv.. Hence, we have the
following

COROLLARY 6. Let n = p1 pt be square-free, and let, ~, be
any transitive 0—>1 permutation of RPi(i = 1, •••, t). Let, ~ be the
induced permutation of Rn defined by (xlf , xt)~ = (a?Γ, , %ΐ),
x^RPi(i — 1, •••,*), and let K be the transformation group in Rn

generated by, ~. Then (Rn, x , + ) is a ring-logic, mod K.

Thus, if, in particular, we choose αΓ = 1 + x in the above Corollary,
we obtain the following (compare with [6]).

COROLLARY 7. Let n be square-free, and let N be the ''natural
group", generated by αΓ = 1 + x. Then (Rn, x , + ) is a ring-logic,
mod N.

Upon choosing, ~, in Theorem 5 in all of the various available
ways, we obtain the corresponding transformation groups K with
respect to which (Rn, x , + ) is a ring-logic.

REFERENCES

1. A. L. Foster, On n-ality theories in rings and their logical algebras including tri-
ality principle in three-valued logics, Amer. J. Math. 72 (1950), 101-123.
2. , p-rings and ring-logics, Univ. Calif. Publ. 1 (1951), 385-396.
3. , pk-rings and ring-logics, Ann. Scu. Norm. Pisa 5 (1951), 279-300.
4. , Unique subdirect factorization within certain classes of universal algebras,
Math. Z. 62 (1955), 171-188.
5. M. H. Stone, The theory of representations of Boolean algebras, Trans. Amer. Math.
Soc. 40 (1936), 37-111.
6. A. Yaqub, On the theory of ring-logics, Canad. J. Math. 8 (1956), 323-328.
7. , On certain finite rings and ring-logics, Pacific J. Math. 12 (1962), 785-790.

UNIVERSITY OF CALIFORNIA, SANTA BARBARA





c

PACIFIC JOURNAL OF MATHEMATICS

EDITORS
H. SAMELSON

Stanford University
Stanford, California

R. M. BLUMENTHAL

University of Washington
Seattle, Washington 98105

J. DUGUNDJI

University of Southern California
Los Angeles, California 90007

*RlCHARD ARENS

University of California
Los Angeles, California 90024

E. F. BECKENBACH

ASSOCIATE EDITORS
B. H. NEUMANN F. WOLF K. YOSIDA

SUPPORTING INSTITUTIONS
UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON
OSAKA UNIVERSITY
UNIVERSITY OF SOUTHERN CALIFORNIA

STANFORD UNIVERSITY
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON

* * *
AMERICAN MATHEMATICAL SOCIETY
CALIFORNIA RESEARCH CORPORATION
SPACE TECHNOLOGY LABORATORIES
NAVAL ORDNANCE TEST STATION

Mathematical papers intended for publication in the Pacific Journal of Mathematics should
by typewritten (double spaced). The first paragraph or two must be capable of being used separately
as a synopsis of the entire paper. It should not contain references to the bibliography. No separate
author's resume is required. Manuscripts may be sent to any one of the four editors. All other
communications to the editors should be addressed to the managing editor, Richard Arens, at the
University of California, Los Angeles, California 90024.

50 reprints per author of each article are furnished free of charge; additional copies may be
obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published quarterly, in March, June, September, and
December. Effective with Volume 13 the price per volume (4 numbers) is $18.00; single issues, $5.00.
Special price for current issues to individual faculty members of supporting institutions and to
individual members of the American Mathematical Society: $8.00 per volume; single issues $2.50.
Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific
Journal of Mathematics, 103 Highland Boulevard, Berkeley 8, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 6,
2-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION
The Supporting Institutions listed above contribute to the cost of publication of this Journal,

but they are not owners or publishers and have no responsibility for its content or policies.

* Basil Gordon, Acting Managing Editor until February 1, 1966.



c

Pacific Journal of Mathematics
Vol. 15, No. 4 December, 1965

Robert James Blattner, Group extension representations and the structure space . . . . . . . . . . . . . . 1101
Glen Eugene Bredon, On the continuous image of a singular chain complex . . . . . . . . . . . . . . . . . . 1115
David Hilding Carlson, On real eigenvalues of complex matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1119
Hsin Chu, Fixed points in a transformation group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1131
Howard Benton Curtis, Jr., The uniformizing function for certain simply connected Riemann

surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1137
George Wesley Day, Free complete extensions of Boolean algebras . . . . . . . . . . . . . . . . . . . . . . . . . . 1145
Edward George Effros, The Borel space of von Neumann algebras on a separable Hilbert

space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1153
Michel Mendès France, A set of nonnormal numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1165
Jack L. Goldberg, Polynomials orthogonal over a denumerable set . . . . . . . . . . . . . . . . . . . . . . . . . . 1171
Frederick Paul Greenleaf, Norm decreasing homomorphisms of group algebras . . . . . . . . . . . . . . . 1187
Fletcher Gross, The 2-length of a finite solvable group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1221
Kenneth Myron Hoffman and Arlan Bruce Ramsay, Algebras of bounded sequences . . . . . . . . . . 1239
James Patrick Jans, Some aspects of torsion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1249
Laura Ketchum Kodama, Boundary measures of analytic differentials and uniform

approximation on a Riemann surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1261
Alan G. Konheim and Benjamin Weiss, Functions which operate on characteristic

functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1279
Ronald John Larsen, Almost invariant measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1295
You-Feng Lin, Generalized character semigroups: The Schwarz decomposition . . . . . . . . . . . . . . . 1307
Justin Thomas Lloyd, Representations of lattice-ordered groups having a basis . . . . . . . . . . . . . . . 1313
Thomas Graham McLaughlin, On relative coimmunity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1319
Mitsuru Nakai, 8-bounded harmonic functions and classification of Riemann surfaces . . . . . . . . 1329
L. G. Novoa, On n-ordered sets and order completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1337
Fredos Papangelou, Some considerations on convergence in abelian lattice-groups . . . . . . . . . . . . 1347
Frank Albert Raymond, Some remarks on the coefficients used in the theory of homology

manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1365
John R. Ringrose, On sub-algebras of a C∗−algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1377
Jack Max Robertson, Some topological properties of certain spaces of differentiable

homeomorphisms of disks and spheres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1383
Zalman Rubinstein, Some results in the location of zeros of polynomials . . . . . . . . . . . . . . . . . . . . . 1391
Arthur Argyle Sagle, On simple algebras obtained from homogeneous general Lie triple

systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1397
Hans Samelson, On small maps of manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1401
Annette Sinclair, |ε(z)|-closeness of approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1405
Edsel Ford Stiel, Isometric immersions of manifolds of nonnegative constant sectional

curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1415
Earl J. Taft, Invariant splitting in Jordan and alternative algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . 1421
L. E. Ward, On a conjecture of R. J. Koch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1429
Neil Marchand Wigley, Development of the mapping function at a corner . . . . . . . . . . . . . . . . . . . . 1435
Horace C. Wiser, Embedding a circle of trees in the plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1463
Adil Mohamed Yaqub, Ring-logics and residue class rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1465
John W. Lamperti and Patrick Colonel Suppes, Correction to: Chains of infinite order and their

application to learning theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1471
Charles Vernon Coffman, Correction to: Non-linear differential equations on cones in Banach

spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1472
P. H. Doyle, III, Correction to: A sufficient condition that an arc in Sn be cellular . . . . . . . . . . . . . 1474
P. P. Saworotnow, Correction to: On continuity of multiplication in a complemented

algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1474
Basil Gordon, Correction to: A generalization of the coset decomposition of a finite group . . . . . 1474

Pacific
JournalofM

athem
atics

1965
Vol.15,N

o.4


	
	
	

