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This paper is concerned with the problem of characterizing
sub-(L) functions, where L is the Euler-Lagrange operator for

the functional ICd[y] — \ Σpj(.D3'y)2 , with n a positive integer,

[c, d] a subinterval of a fixed interval [a, b], and p0, pί9 - 9pn

continuous real-valued functions on [α, 6] with pn(x) > 0 on this
interval. Under certain hypotheses on the operator L, it is
shown that if / is a function in the domain of L on a sub-
interval [c9 d] of [a, b]9 then the statement that / is sub-(L)
on [c9 d] is equivalent to each of the following conditions: (i)
(-l)nLf(x) ^ 0 on [c, d] (ii) Icd[y] ^ Icd[f] whenever y is a func-
tion having continuous derivatives of the first n — 1 orders
with Dn~λy having a piecewise continuous derivative on [c, d]
such that Dj~xy and Dj~xf have the same value at c and at d
for j in {1, •••,%}, and y(x) — f(x) ^ 0 on [c, d].

Section 2 is devoted to the definition and equivalent formulizations

of Euler-Lagrange operators and to a discussion of adjoint operators.
In § 3 it is shown that, under a hypothesis which is equivalent to the
operator L being nonoscillatory on [α, 6], L admits a factorization of the
form ( — l)nL$L0, where Loy = Yΰ^TjD'y for suitable r0, r19 , rn.
Under the further hypothesis that the operator LQ possesses the "pro-
perty W" of Polya [3], it is established that L can be written as a
composition of first order real linear operators.

In § 4, the analogue of Polya's mean-value theorem in [3] is ob-
tained for L under the above hypotheses on L and Lo. This theorem
is used in §§ 5 and 6 to give characterizations, which are generalizations
of results of Bonsall [1] and Reid [5] on convexity with respect to
second order operators, of sub-(L) functions in terms of the operator
L and the functional Ied, as well as a theorem on the constancy of
sign of the Green's function for a certain incompatible boundary-value
problem.

Finally, in § 7, it is proved under the above assumptions on L and
Lo that the null-space of L is a 2^-parameter family in the sense of
Tornheim [7], although the relationship between sub-(L) functions and
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functions which are convex with respect to this family remains un-
decided.

Matrix notation will be used throughout; in particular, a vector is
a matrix having one column. If M is a matrix, then M* denotes its
transpose. If M is a symmetric matrix, (he., M = M*), then ikf is
nonnegative (M^ 0) if and only if ψMη is a nonnegative real number
for all admissible vectors η. The symbol Eh is used to denote the
k x k identity matrix, 0 is used to denote the zero matrix of arbitrary
dimensions, and, for j in {1, , n), ej denotes the vector [δ<i]*=1. If
M is a function matrix, (i.e», a matrix of real functions), then M is
said to be continuous, differentiate, etc., whenever each of its ele-
ments has the corresponding property. If M is a differentiate func-
tion matrix, then DM denotes the matrix of derivatives of the elements
of M.

All functions appearing are real-valued. In particular, if A; is a
nonnegative integer and [c, d] is a subinterval of [α, 6], then Ck[cf d]
denotes the class of all real-valued functions which have continuous
derivatives of the first k orders on [c, d]. The symbol zΓ[c, d] will
stand for the class of all functions w in Cn~\c, d] for which On~xw
has a piece wise continuous derivative on [c, d], and Δ$[c, d] is the class
of all those functions w in An[c, d] such that D'^wic) — 0 = D5~ιw{d)
for j in {1, •••,%}. Also, Rk denotes the class of all fc-tuples of real
numbers. Finally, if / is an integrable function and c is a point in

its domain, then \ / denotes the function whose value at x is \ / .
Jc J c

2. Properties of differential operators* Let [α, b] be a non-
degenerate compact interval and, for each a and each β in {0,1, , n},
let faβ be a continuous real-valued function on [α, &]„ The first problem
of this section is to examine the form of the Euler-Lagrange operator
L which corresponds to the functional Ied, where [c, d] is a subinterval
of [α, b], defined on An[c, d] by

(2.1) Uy] = ΓΓ Σ faβDavD*yλ .
JcLα>,/3=0 J

By definition, a function y belongs to the domain of L on a subinterval
[c, d] if and only if y e Cn[c, d] and there exists a function φ[y] in
C°[c, d] such that for every w in Δl\c, d], the relation

(2.2) ί T Σ faβD"yD*w] = \*φ[y]w

holds. In this case, φ[y] is uniquely determined, and Ly is defined to
be ( — l)nφ[y]. The following result gives an explicit form for the
operator L.
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THEOREM 2.1. If L is the Euler-Lagrange operator for the func-
tional defined by (2.1), then y belongs to the domain of L on a sub-
interval [c, d] of [α, b] if and only if ye Cn[c, d] and there exist
functions μ^y], m

 fμn[y] in C\c, d] such that

(2.3)
μi-i[y] = Σ/»i-i°*ϊ - Dμly] , i in {2, , n} .

In this case,

Ly = {-lY^ίϋμM - Σ fc,oDay) ,

that is,

Ly = D(D( D(D(± fanD«y) - Σ Ln-^l

n \ n

First, if y is in the domain of L on [c, d], then y satisfies (2.2)
with φ[y] = { — l)nLy. Let ply], p^y], - , pn[y] be the functions de-
fined recursively by

po[y] = Σ f*J)ay - φ\v\

<2.4) r f
Ply] = Σ faiD'y - pi-M , i in {1, , n) .

cύ=0 J c

Then, for every w in Δl\c, d] and each Jk in {1, , ri\,

( T i t Σ faβD
ayD?w) + lO^Ji/lί?*-1^] = 0 .

In particular, \ί h — n then

\ = 0 ,

S d

pn[y]Dnw — 0. Since w is
c

an arbitrary member of Δl\c, d], the fundamental lemma of the cal-
culus of variations implies there is a polynomial function Qn^ of
degree at most n — 1 such that pn[y] = Qw_i. If Qn-i-j denotes the
j t h derivative of Qn^ for y in {1, , n — 1}, then, for i in {1, , n}
let μ{[y] be
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Then

μάv] = pΛy] + ί P«ΛV\ = Σ fanD
ay ,

Jo o>=0

and, for i in {2, , %}, .D^JIJ/] exists, is continuous, and

Thus, the relations (2.3) hold, and, since Qo is a constant function,

n

cύ=0

SO

( n \

Df*ι[y] — Yxfa*Day)
Conversely, suppose y e Cn\cy d] and there exist functions μ^y], ,

μn[y] in Cλ[c, d] satisfying (2.3). If

φ[y] =

then, for any w in J?[c, d],

Σ ΛβDβi/Z)^l

= \Λ\μJίv]D w + Σ Φ^+1[2/] + μA.v\)B*n + Φμλy] + <plv\)w\
J c L β=i J

Σ

Hence, y is in the domain of L with

Ly = (-l)VM = (- i r + 1 (^ iM - Σ /»o-Dα2/) .

Since the coefficients faβ are only assumed to be continuous, L is
in general not a 2wth order differential operator in the classical sense
but is an example of what has come to be known as a "quasidifferential
operator". However, if the "leading coefficient" fnn vanishes at no
point of [a, b], then the equation Ly — φ is equivalent to a first order
2^-dimensional vector system.
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THEOREM 2.2. Suppose fnn(x) Φ 0 on [a, δ], A and B are the
n x n matrices

0

0

___ Jon/Jnn Jln/Jnn * Jn—lnlJnn __

respectively, F is the n x n matrix

Λ . . . 0 f If
1 v J nOlJ nn

JnllJnn

n—i #

_ J nn—llJ nn

and C is the n x n matrix whose element in the ith row and jth
column is f^U-i — (/«<-i/j-m)//»* Then Ly = φ if and only if u =
[-Di"1l/]?=i, v = [μi[y]]t=i is a solution of

(2.5) Du = Au + Bv , Dv = Cu + Fv + {-

Moreover, if fnn{x) > 0 on [a, b], then the matrix B(x) ^ 0 on [α, δ],
and if the matrix [faβ\Z=o β=o is symmetric then so is the matrix C,
and (2.5) becomes

(2.6) Du = Au + Bv , Dv = Cu - A*v + ( -

The first part of the theorem follows immediately from Theorem
2.1, particularly the fact that the functions μ^y], •• •,/*«[#] are de-
termined uniquely by (2.3) for a given y in the domain of L. The
last statement of the theorem is obvious from the definitions of the
matrices involved.

We shall be concerned in particular with the homogeneous vector
systems

Dv = Cu + Fv ,

Dv — Cu — A*v .

(2.5') Du == Au + Bv ,

(2.6') Du^ Au + Bv ,

and the related matrix systems

(2.5") DU = AU+ BV ,

(2.6") DU = AU+ BV ,

For convenience, if each of U and V is an n x r function matrix,
then (U; V) will stand for the 2n x r function matrix whose ith
column consists of the functions U13 , , Un3, V13, , Vn3.
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The following property of the system (2.5') will be especially im-
portant for discussing the oscillation properties of L in the case that
fn%(χ) > 0 and the matrix [/αβ] is symmetric.

THEOREM 2.3. The system (2.5') is identically normal on [a, δ],
that is, if (u; v) is a function vector which satisfies (2.5') and there
is a nondegenerate subinterval I of [a, b] on which u vanishes identi-
cally, then both u and v vanish identically on [a, δ].

If (u; v) satisfies (2.5') with u(x) = 0 on a nondegenerate sub-
interval I of [a, b], then the relations

vn = fnnDun +

7 1 - 1

Σ
cύ=0

Vi-l = Σ fai-lUa + 1 + fni-lDUn — D ^ , ί in {2,

imply that v(sc) Ξ= 0 on / and, therefore, both u and v must vanish
identically on all of [α, 6].

Indeed, if (u; v) is a solution of (2.5') with u±(x) = 0 on a non-
degenerate subinterval I of [α, δ], then the first n — 1 component equa-
tions of (2.5') imply that u(x) = 0 on /, so u and v vanish identically
on I. Thus, in view of the results of Theorems 2.2 and 2.3, together
with the elementary existence and uniqueness theorems for first-order
vector differential equations, it follows that if fnn(x) Φ 0 on [α, δ] then
the null-space of L has a basis of 2n linearly independent functions,
so that L deserves to be called a "2wth order operator".

We conclude this section with the well-known formulization of the
adjoint Lo* of an operator Lo which is defined by

(2.7) Loy = Σ
3=0

where the coefficients r0, rlf , rn are continuous real-valued functions
on [α, δ]. By definition, a function z belongs to the domain of L* on
a subinterval [c, d] of [α, δ] if and only if z e C°[c, d] and there exists
a function φ[z] in C°[c, d] such that, for every w in Δt[c, d],

S d Cd

ZLOW — \ φ[z]w .
c J e

In this case, φ[z] is unique, and Ltz is defined to be φ[z\. Using
much the same integration-by-parts technique, and subsequent applica-
tion of the fundamental lemma of the calculus of variations as in the
proof of Theorem 2.1, we find that z belongs to the domain of Lo* on
[c, d] if and only if z e C°[c, d] and there exist functions vx[z\y , vn[z]
in C\c, d] such that
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(2.8)
i in {2, ,n} ,

in which case Lo*£ = roz —
It is easily verified that if rn(x) Φ 0 on [α, b] and G is the n x n

function matrix

G =

0

0

E

_ -ro/rn -rjrn -rn_Jrn „

then Loτ/ = / if and only if there exists a function vector u = [t6<]?=1

such that Z)u = Gu + (f/rn)en and 2/ = ^x, and Lo*^ = 0 if and only if
there exists a function vector v = [/yί]Γ=i such that Dv = — G*v — ge1

with 2 = <vn/rn.

3* Factorization of Euler-Lagrange operators* In this section
we shall consider a particular functional of the form (2.1) which is
given by

(3.1) IJy] =
Σ

c Lj=o
where p0, plf , p% are continuous real-valued functions on [α, 6] with
P*(#) > 0 on this interval, and [c, cZ] is a subinterval of [α, 6]. We
then have the following special case of results of § 2.

THEOREM 3.1. If L is the Euler-Lagrange operator for the func-
tional Icd given by (3.1), then a function y belongs to the domain of
L on a subinterval [c, d] of [α, b] if and only if ye Cn[c, d] and there
exist functions μ^y], •••, μn[y] in Cx[c, d] such that

(3.2)
μlv] = PnDnv,

μi-iiv] = Pi-ιΌ{-ιy - Dμly] , i in {2, , n) .

In this case Ly = ( — l)n+1(DμXy] — pQy), that is,

Ly = D(D(. D(D(pnD
ny) - p^D^y) .)

Moreover, the equation Ly = φ is equivalent under the transfor-
mation

ut = D'-' i in {1, , n} ,

i in {1, , n)
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to the vector system

(3.3) Du = An + Bv , Dv = Cu - A*v +

where

0

0 ••• 0

0

0

Po

0 Pn-l

In particular, the equation Ly = 0 is equivalent under the above
transformation to the identically normal system

(3.3') Du = Au + Bv , Dv = Cu — A*v .

As was indicated in § 2, we shall also make use of the related
matrix equation

(3.3") DU = AU + BV , ΰ 7 - CU - A*V .

In particular, consider the following condition:

(Hi). There exist solutions y19 9yn of Ly — 0 such that if
U= [D^yjll^ t, and V= [μlyj]]^^ then U*(x)V(x) - V*{x)U(x) = 0
on [α, 6] and U(x) is nonsingular on [α, &].

Since the matrix (U; V) based on the matrices U and V of (H:)
is a solution of (3.3"), U*V — F*Z7 is a constant function matrix,
and the particular condition that this constant matrix be the zero
matrix is what has been termed the condition that (U; V) be a "select
solution" of (3.3"), or that the columns of (U V) be "mutually con-
jugate" or "conjoined" solutions of (3.3'), (see, e.g., Reid [4]).

Hypothesis (Hx) has an important bearing on conditions of oscilla-
tion involving L and on the variational behavior of the functional Icd.
At the present, however, we are concerned with the following property
of L.

THEOREM 3.2. // (H^ holds, then there exist continuous real-
valued functions r0, ru , rn on [α, b] with rn(x) > 0 on this interval
such that if Lo is the nth order differential operator defined by

(3.4) LoV = Σ

and L is the Euler-Lagrange operator for the functional (3.1), then
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Moreover, the functions y19 * ',yn specified in (H^ form a basis for

the null-space of Lo.

It is useful for the proof of this theorem to introduce the following
notation. Let R be the n x n matrix

0

let P—C, and let ω be the function defined on [α, b] x Rn x Rn by the
formula 2ω(x, σ, τ) = τ*R(x)τ + σ*P(x)σ. Then L is also the Euler-
Lagrange operator for the functional

2ω(x, Ύ](x), Dη(x))dx

subject to the restraints

DVi = Vi+i f i w {1, , n — 1} .

Now, if U and V are as in (HO, and, for a subinterval [c, d] of
[α, 6], y e Cn[c, d] and w e zlw[c, d], then with

we have

1 # }

This identity is essentially formula (5.3) in Reid [6]. Since

ϋD[I7-γ] = UiDU-1)^ + Dη*

and the matrix U is independent of both y and w, as is also the
matrix R, it follows that there exist continuous functions r0, n , , rn

independent of y and w such that if Lo is defined by (3.4), then

hf]) = (LQy)(Low) .(3.6)

In particular, rw = pj/2, so rn(a?) > 0 on [α, δ]. If w also belongs to
Δl{c, d], then (3.5) and (3.6) imply that

(3.7)
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Theorem 2.1, with faβ — rarβ, and the remarks at the end of §2 con-
cerning the adjoint Lo* of an operator LQ of the form (3.4), show that
( — ϊ)nL*LQ is the Euler-Lagrange operator for the functional given by
Γd

\ (L0y)2 on An[c,d] and that y belongs to the domain of ( — l)nLίL0 if
Jc

and only if y e Cn[c, d] and

\(LQy)(LQw)] = \d[Lί(L,y)w]
c Jc

whenever w e AH[c,d]o On the other hand, the left-hand member of (3.7)

S d

Σj=QPjD3yDjWo These remarks together with the definition
c

of L show that a function y in Cn[c, d] belongs to the domain of L
if and only if it belongs to the domain of ( — l)nL$L0 and, in this,
case, Ly = ( — ΐ)nLfLoy.

Finally, if y is one of the functions y19' ,yn specified in (H^)
and rf = [J5<"1i/]Γ=i, then £/~γ i s constant and (3.6) implies that LQy = 0.
The linear independence of {yly , yn) follows from the assumption
that U(x) is nonsingular on [α, 6].

In [3], Poly a showed that, under a certain hypothesis which he
called "property W", the operator Lo can be written as a composition
of first order operators. We shall show that, under this same hypo-
thesis, the operator Lo* can also be written in this form, and, therefore,
so can L if the additional hypothesis (Hx) holds. The "property W"
of Polya shall be referred to in this paper as:

(H2). There exist solutions y19 * ,yn of Loy = 0 such that if

Wk denotes the Wronskian

(3.8) W(yίf ••-,»*) = det [D<-1yJ]ii1 A ,

then Wk(x) > 0 on [α, b] for each k in {1, , n}.

It should be noticed that if hypotheses (Hx) and (H2) were always
to be applied simultaneously, then one could assume without loss of
generality that the functions yu , yn specified in (Hx) also satisfied
the condition on the corresponding Wronskians which is stated in (H2).
This follows directly from the last statement of Theorem 3.2 and the
identical normality of (3.3'). However, we shall be interested in cer-
tain statements which are true under (H2) alone.

The following known property of Wronskians is stated here for
convenience.

LEMMA. If each of fl9 ,fkff belongs to Ck[a, 6], and W(f19 ,fk)
vanishes at no point of [α, 6], then
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D[W(fu •••,/*-!,/)/TΓ(Λ, •••,/*-!,/*)]

= W(f19 -, Λ_0 TΓ(Λ, - , Λ_χ, Λ, /)/[ TΓ(Λ, , Λ_χ, Λ ) ] 2 .

This equality is most easily seen by noting that each side is the
value at / of a kth order linear differential operator whose null-space
has {/i, •••,/*.} as a basis. Hence, the two expressions must be pro-
portional, and examination of the leading coefficients shows that the
expressions are, in fact, identical.

THEOREM 3.3. If (H2) holds, then there exist positive functions
τr0, π19 , πn with π3 in Cn~'[a, b] for j in {0, 1, , n} such that if
Γj and Jj are the operators defined recursively by:

Γoz = πnz , Aoy = (l/πo)y ,

(3.9) Γj-z = π^jDΓj^z , j in {19 - ,n — 1} , A3y = π3DA3_λy ,

Lo = An and Lo* = JΓW.

It is to be emphasized that a real-valued function / belongs to
the domain of Γ3 (respectively, A3 ) on a subinterval [c, d] of [α, b] if
and only if / is continuous on [c, d] and if j e { l , • β,/^}, then Γj^f
(respectively, A^J) is in C\c, d].

By a theorem of Polya [3], if Wo = 1, ^ is as specified in (H2)
for k in {1, . . . , n}, π0 = Wu πά = W!/(W^Wi+1) for j in {1, , n - 1},
and 7ϋn = rnWJWn^.l9 then L0 = An. Furthermore, since each yk ap-
pearing in (H2) is necessarily in Cn[a, δ], it follows that each π3 is in
Cn~j[a, δ], and there exist continuous functions pi3ii in {0,1, β ,w},
y in {0,1, , n}, such that

(3.10) A3y = ± p^Dhj , for j in {0, 1, , n} .

Moreover, pj3 = W3 /W3+1 for j in {0,1, , n — 1} and pnn = rΛ, so
that Pu(x) > 0 on [α, δ] for i in {0,l, ,w}. This implies that a
function tt; is in JJ[c, cί] for a subinterval [c, d] of [α, δ] if and only
if w e An[c, d] and A3w vanishes at c and at d for i in {0,1, , n — 1}.

As to the factorization (3.9) of Lo*, notice that if z is in the
domain of Γn on a subinterval [c, d] of [α, δ] and weJJ[^,(ί], then
repeated use of integration by parts and the fact that A3 is of the

S d Γd Γd

zLQw — 1 zAnw — \ wΓnz. Hence, by definition of
C J C J C

Lo*, z belongs to the domain of L* on [c, d], and Γnz = L£z. In par-
ticular, since Γn is clearly a linear operator, the null-space of Γn has
dimension at most n.

On the other hand, suppose that, for k in {1, β ,^},
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(3.11) zk = W(y» , yk-» yk+ly , yn)/(rn Wn) .

Then {zu * ,zn} is a basis for the null-space of Lo*. For the discus-
sion of adjoints in § 2 shows that LQy = 0 and L*z = 0 are, respec-
tively, equivalent to vector systems

(3.12)

(3.13) Dv = -G*v .

But if F is the function matrix [D^y^Zijlu then Y is a fundamental
matrix for (3.12), by choice of yu - *,yn. Hence, the matrix Y*"1 is
a fundamental matrix for (3.13). It follows that the elements in the
last row of Y*"1

J each multiplied by l/rΛ, form a basis for the null-
space of Lo*. But these elements, after a proper choice of sign, are
just the functions zk.

Now, zn = ^ / ( r . W J - l/πn, so D ( τ τ A ) = 0 and Γnzn = 0. For
k in {1, , n — 1} and j in {0,1, , n — (k + 1)}, it will be shown
by induction on j that Γάzk is defined, and

Γβh = W(l/i, , Vlc-l, yic + 1, ' , 1/—i)/ Wn-i-l

For the case j = 0, Γozk = πw2Λ = W ^ , , ?/&_!, 2/ft+1, , yn)/ Wn_u since
TΓ̂  = rnWJWn-!. Assume the result holds for some index j in {0,1, ,
n - k - 2}. Then

= W(yu , #*_!, 2/Λ+1, , 3/n_i)/ W(ylf , T/^!, ?/&+1, , yn^-u yk)

Since both Wronskians appearing have at least one derivative, so does
ΓjZk, and by the above lemma,

u ,yk_» yk+1, ,y n ^ ί 9 y k )]*

Vk-l, Vjc+1, -•', Vn-j-l)

yk, Vn-i)

Therefore,

DΓ^fc = W(yl9

and then

Γj+1zk = π^^DΓjZj,

which completes the induction. In particular,

Γ%_k_xzk = Wd/!, --,2/^1, yk+i)/Wk ,

so
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Thus Γn_kzk = πkΌΓn_k_λzk = 1, so DΓn_kzk = 0 and Γnzk = 0. This
shows that {zu , zn} is not only a subset of the domain of Γn, but,
by the previous remarks, it is also a basis for the null-space of Γn.

Now, suppose z is in the domain of Z/o* on [c, d\. The form of
the operator Γn clearly implies the existence of a function zQ such
that Γnz0 — L$z. But then z0 is in the domain of L£ on [c, d] as
well, and Γnz0 = L*z0, so L*(z — z0) = 0. Therefore there exist con-
stants cu * ,c w such that z — 20 = Σ*=i CΛ> so 2 is a linear com-
bination of elements in the domain of Γn and must therefore be in
the domain of Γn. Moreover, Γnz = Γ%20 + Σϊ=i GkΓnzk = Lo*2. Thus,
the operators Lo* and / ^ are identical.

Throughout the remainder of this discussion, Icd will denote the
functional given by (3.1) for which L will he the Euler-Lagrange
operator with the corresponding operators Lo and L* as in Theorem
3.2 and Γά and Aά defined by (3.9).

4* A mean-value theorem* In this section, theorems analogous
to Polya's Theorem I, II, III of [3] are obtained under hypotheses (HO
and (H2) for the operator L. For these theorems and certain pre-
liminary results, we shall adopt the following terminology: if X is a
finite set of real numbers, then a number x is said to be intermediate
with respect to X if and only if x lies in the interior of the smallest
compact interval containing X, unless X i s a one-point set {$}, in which
case the only intermediate point is defined to be the point x. The first
result is an analogue of Polya's Theorem I for the operator Lo*.

THEOREM 4.1. Under hypothesis (H2), if z is in the domain of
I/o* on a subinterval I of [α, b] and one of the following conditions
holds:

(i) z vanishes at n + 1 points tx<t2< < tn+1 of I,
(ii) z vanishes at n points tλ < t2 < < tn of I and there is

a j in {1, , n} for which D(rnz)(tj) = 0,
then there is a point t intermediate with respect to the set {ίj such

that Lfz(t) = 0.

Notice that no additional condition of differentiability of the func-
tion z has been asserted in (ii), since rnz has a continuous derivative
whenever z is in the domain of Lf, (see 2.8).

In case (i), it will be shown by induction that for every j in
{0,1, , n} there exist n — j + 1 points t{ < t{ < < t{_j+1 in
[tu tn+1] Bit which ΓjZ(t§ = 0. The assertion for j = 0 is just the
condition (i). If the statement is true for some j in {0,1, ,n — 1},
then, by Rolle's theorem, for each i in {1, •• , ^ — j} there is a point
t{+1 in (tl ti+1) such that DΓfltyi*1) = 0. Hence Γj+1z(t{+1) = 0 for i



100 J. COLBY KEGLEY

in {1, . . . , n _ j}y a n d t i ί < < ί i < ^ T h u g t h e i n

duction is complete, and, in particular, there is a point t which lies
in (tu ίΛ+t) at which £Q*2(ί) = Γβ«(ί) = 0.

In case (ii), Rolle's theorem implies that for each i in {1, -,j - 1}
there exists a point t\ in (ί i ft< + 1), and for each i in {i, . . . , n - 1} there
exists a point t} +1 in (tif t< + 1), such that />(*}) = 0, i in {1, , j -. 1},
and Λs(tί+1) = 0, i in {i, . . . , n - 1}. But

and WJWn^ has a derivative, so

since z also vanishes at ί, . Hence, if t) = <y, then the n points
ίϊ < ίί ί f

, , ) y, then the n points
ίϊ < ίί < < ίί of (ί1? ίn) satisfy Γ^(^) = 0 for i in {1, . , n}. The
same inductive process used in the proof of (i) then gives the ex-
istence of a number t intermediate with respect to {tlf ••-,£} such
that Lfz(t) = 0.

Theorem 4.1, together with results of § 3, result in the following
analogue oϊ Polya's Theorem 1 of [3] for the operator L.

THEOREM 4.2β // (HJ and (H2) hold, y is in the domain of L
on a snbinterval I of [a, 6], x, and x2 are points of I with x1 < χ2,
and there is a point x0 of I different from x1 and x2 such that
y{%0) = 0, white v sαtis^es tfie

(4.1) Dt-'yfa) = 0 = D*-ιy{x2) ,

is a point t intermediate with respect to {xQ, χu χ2} at
which Ly{t) = 0.

An induction argument will show that for each k in {1, « , n — 1}
there exist points s* < s* < . . . < sk

k+1 which are all different from x,
and x2 and lie in (xl9 x2), (χl9 χ0), or (xOi χ2), depending as x1 < xQ < a?2,
α;2 < α?0, or α?0 < xί9 such that ^^(s^) = 0 for i in {1, , k + 1}, and
Av&i) = 0 = Λj/(α2).

First, the statement that J^(xO = 0 = Aky(x2) for fc in {0,1, ,w-l}
follows from the fact that A # is of the form (3.10) and the hypothesis
that y satisfies (4.1). Since Ay(x0) = (l/πo)y(xo) = 0, and a?0 is different
from xt and a?2, an application of Rolle's theorem gives the assertion
when k = 1. If the statement is true for some k in {1, , n — 2},
then points s?+1 < s2

fe+1 < . . . < stχ\ are chosen as follows. If xx < x0 < a?2>

then the points sf, s2*, •• ,8Ϊ+i are in ( ^ a?2) and, by Rolle's theorem,
choose sί+1 in (xu βf), s{+i in (βj+1, α;2), and s?+1 in (sU, α?f), for i in
{2, . . . , & + 1}, such that DJky(sf^) = 0 for * in {1,. . . , * + 2}. If, on the
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other hand, x2 < Xo, then there is an index q such that Sq < x2 < sj+1

while xλ < a* for i in {1, , fc + 1}. Therefore, choose sί+1 in (xly sf),
βj+ 1 in (sti, sj) for ί in {2, , q}, sk

qχ\ in (sj, a?2), sJίJ in (&2, sj+1), and
sk+1 in (st 2, sj_i) for i in to + 3, , Λ + 2} such that DAky(sl+1) = 0,
ΐ in {1, , k + 2}. A similar method of choice gives the values s^+1 in
case x1 lies between xQ and α?2. But then Ak+1y(sϊ+1) ~ (πk+1DJky)(sk+1) = 0

for i in {1, , k + 2}, and the induction is complete.
In particular, there are points s?"1 < sf-1 < < s^"1 different from

xx and ίc2 at which An_1y vanishes, and, as the above construction
shows, these points are also intermediate with respect to {x0, xu x2}.
But An_λy also vanishes at xx and x2 so, applying Rollers theorem once
more, there exist points tλ < t2 < < tn+ί different from xx and x2

at which Loy(U) = J ^ ( ^ ) = {π^A^y)^) = 0. By Theorem 4.1 there
is a point t intermediate with respect to {tu

 β ,ί%+1}, (hence, with
respect to {x0, xu x2}), at which Ly(t) = ( — l)nL£(Loy)(t) = 0.

Before continuing with the development of this section, we intro-
duce an important property of the operator L. Since the equation
Ly — 0 is equivalent to the identically normal system (3.3') in which
the matrix B(x) is nonnegative on [α, 6], it follows, (see Theorem 5.2
of Reid [6]), that a necessary and sufficient condition for hypothesis (H^
to hold is that L be nonoscillatory on [α, 5], that is, if a g x1 < x2 fg &,
then the boundary-value problem

( 4 ' 2 ) D'-Wx,) = 0 - D^y(x2) , j in {1, . . . , n} ,

is incompatible, i.e., has the function which vanishes identically on [^!,x2]
as its only solution. The equivalence of Ly = 0 to (3.3') then implies
that (HO is also equivalent to the statement that if {xuy\,yl, -- ,2/Γ)
and (x2, y\, y\, , yΐ) are points of Rn+1 with α ̂  xx < x2 ^ b and
^ G C 0 ^ , ^ ] , then there exists a unique solution of the nonhomogene-
ous boundary-value problem

(4.2') LV = Ψ '
D^vix,) = y{, i in {1, 2}, j in{l,-..,n}.

This enables us to formulate the following extension of Polya's mean-
value theorem, the proof of which is identical to that of Polya.

THEOREM 4.3. Suppose (Hj) and (H2) hold, f is a function in
the domain of L on a subinterval I of [a, b], xL and x2 are points
of I with x1 < xz, and y12 denotes the solution of

(4.3) LV = ° '
D ' - W J D i W ) i i n { 1 , 2}, j i n {1, • - • , % } .
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If hl2 denotes the solution of

(4.4) *» = X '

D'-'yfc) = 0 , i m {1, 2}, j m {1, . . , n) ,

then for each point x in I, there is a point tx in I such that

(M) f(x) = y12(x) + K(x)Lf(tx) .

If x = x1 or x = cc2, then (M) holds for any choice of tx. If x e I
and x is different from â  and x2, then Λ12(a;) ^ 0 by Theorem 4.2, so
there is a (unique) number cβ such that f(x) — y12{x) + h12(x)cx. Let
ό1^ denote the function / — y12 — cxhl2. Then Θx is in the domain of
L,Ds-1θΛ(xi) = 0 for i in {1,2}, j in {1, « ,^}, and 0β(α) = 0. By
Theorem 4.2, there is a point ίs intermediate with respect to {x,x19 x2}
at which Lθx(tx) = 0. But

L0β = I// — Lτ/12 — cβLλ la = L/ — cxΛ ,

so Ca. = Lf(tx) and (M) follows.
It was noted that the solution h12 of (4.4) does not vanish in [α, b]

except at xx and at x2. We now determine exactly what the sign of
h12 is on (xu x2) and on the union of [<z, x±) and (x2, b\.

THEOREM 4.4. Under hypotheses (H^ and (H2), if h12 is the solu-
tion of (4.4), then

(-l)nh12(x) > 0 , if x1 < x < x2 ,

A12(α?) > 0 , if a S x < xλ or x2 < x ^ b .

Fix x1 and x2 in [α, b] with sî  < α?a, and suppose z — L0h12. As in
the proof of Theorem 4.2, one obtains by use of Rollers theorem a set
of n points # < £ ? < • • • < £ ? in (xu x2) such that z(tϊ) = 0 for Λ in
{1, •• ,w}. Applying Rollers theorem as in the proof of Theorem 4.1,
for each j in {1, , n} there exist n—j + 1 points t)<t)< < t]~j+1

such that t) < ίj+i < ί i + 1 for i in {1, , n - 1}, k in {1, , n - j}, and
Γj^zit)) — 0 for j in {1, , n}, k in {1, , n — j + 1}. If, for example,

Sj = η~j+\ then x1 < sn < §,,_! < < sx < ίc2 and Γ^zisj) = 0 for j "
in {1, •••,%}. But Lfc12 - (-l)wLo*^, so L*z = ( - l J
Therefore,

In particular, suppose sx< x ^ x2. Then z(x) > 0, because each of the
functions πj is positive on [α, δ], and at the jth. stage of the indicated
iterative procedure used to calculate z(x) the integral function
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πol .]l
n J JJ

is necessarily restricted to an interval with left end-point sn_j+1 and is
therefore positive. However, Theorem 4.1 and the fact that L*z = ( — l)n

imply that z cannot vanish at any point other than t\,tl, , if, and
that z must change sign at each of these points. Since z(x) > 0 on
(*Γ, «a] = (su x2], it follows that (-l)nz(x) > 0 on [xx, t\). But sfo) =
LJbJpt) = [ΣiUr^h^ix,) = K D ΛJί^) for i in {1, 2}, and r.fo) > 0,
so ( — l)nDnh12(x1) > 0,Dnhl2(x2) > 0, and the conclusion follows.

5* Sub-(L) functions. We are now prepared to define the notion
of a sub-(L) function and to examine some of the properties of func-
tions of this type. Throughout this section, it is assumed that hypo-
theses (Hi) and (H2) hold.

A function / which has derivatives of the first n — 1 orders on a
subinterval I of [α, 6] is said to be sub-(L) on I if and only if for
every pair of points xx < x2 in I, if y12 is the solution of the boundary-
value problem (4.3), then f(x) ^ y12(x) on [ccj., x2], and a sub-(L) func-
tion / is strictly sub-(L) on I if and only if for every pair of points
x1 < x2 in Ijf{x)<y12{x) on (xlfx2). We have the following charac-
terization of sub-(L) functions.

THEOREM 5.1. If f is a function in the domain of L on a sub-
interval I of [α, δ], then f is sub-(L) on I if and only if ( — l)nLf(t) <£ 0
on I. Moreover, if ( — ϊ)nLf(t) < 0 on I, then f is strictly sub-(L) on I.

Suppose ( — l)nLf(t) ^ 0 on 7. Let x1 and x2 be points of / with
Xi < x2, let y12 be the solution of (4.3), and let h12 be the solution of
(4.4). By Theorem 4.3, if x e I then there is a point tx in / such that

(M) fix) - yl2(x) + hn{x)Lf(tx) .

But {-lfLf(tx) g 0 and, by Theorem 4.4, (-l)nh12(x) > 0 on (xu x2),
so that if x1 < x < x2 then f(x) ^ y12(x) It is also seen that, since
h12(x) > 0 outside the interval [x19 x2],

( - l ) n f ( x ) ^ ( - l ) n y 1 2 ( x ) if xel and x $ [xu x2] .

Conversely, if / is sub-(L) on J, but there is a point t0 of I such
that ( — l)nLf(tQ) > 0, then there is a nondegenerate subinterval [xux2]
of / on which (~l)nLf(t) > 0. Applying the mean-value formula (M)
on [xu x2], one has f(x) > y12(x) on (xu x2), a contradiction.

The last statement of the theorem clearly follows from formula

(M).
In view of the equivalence of Ly — φ to the nonhomogeneous first
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order linear system (3.3) and the classical properties of the Green's
matrix for the corresponding incompatible first order system which is
equivalent to (4.2), it follows that the solution / of Ly = φ which
satisfies the boundary conditions (4.1) is given by

f(x) = [2g(x, t)φ{t)dt ,

where the Green's function g is real-valued on [xu x2] x [xu x2] and
has the following properties:

( i ) g and the first n partial derivatives with respect to its first
argument are continuous.

(ii) If i e {2, , n}, then, in the notation of (3.2), the mapping
Ti:(x,t)—> f*i[g(t)](x) is continuous on [xu x2] x [â , cc2]

(iii) On each of {(x, t)\ x1 ^ x < t ^ x2} and {(x, t): x1 ^ t < x ^ x2),
the mapping Ty\(x,t)^μ&g(t)\{x) is continuous, and if xι<t<x2,
then Ti(ί-, t) - T,{t+, t) = (-1)\

(iv) If Xi<t < x2, then on each of the half-open intervals [xu t)
and (t, x2] the function μ^git)] has a continuous derivative, and
Lg(t) — 0 on each of these intervals; moreover, g(t) satisfies the
boundary conditions (4.1).

(v) g(x,1) ΞΞ g(t, x) on [xl9 x2] x [xl9 x2].
The following theorem on the Green's function gives a strengthen-

ing of the second assertion of Theorem 5.1.

THEOREM 5.2. If a rg xx < x2 ^ b and g is the Green's function
for the incompatible problem (4.2), then ( — l)ng(x, t) ^ 0 on [xu x2] x
yjuu JU2\.

If not, then, since g is continuous, there is a point (α?0,ί0) in (xί9 x2) x
(xί9 x2) such that ( — l)ng(x0910) < 0. Using the fact that g(x, t) — 0 on the
boundary of [xu x2] x [xί9 x2], let ίx denote IΛJB{t: xγ^t <t0, g(x0, t) — 0},
and let t2 denote GLB{£: tQ < t ^ x2, g(x0, t) = 0}. Then t1<t0< t2 and
the continuity of # implies that ( — l)ng(x0, t) < 0 on (ίj., t2) and flf(α?0, ίi) =
0 = 0(&o, t2).

Suppose ψ is the function whose value at t is g(xOy t) for £ in
[tu t2] and is zero otherwise. Then φ is continuous, and if / is de-
fined on [xlf x2] by

f(x) = \ V(^, t)φ(t)dt ,

then Lf—φ and, since ( —l)*<p(ί) ^ 0 on [asi, cc2], / i s sub-(L). But
D^ffa) = 0 = D5~ιf(x2) for j in {1, •••, w}, so, by definition of sub-
(L) functions, f(x) ^ 0 on [xl9 x2]. On the other hand,
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which is positive, a contradiction.

THEOREM 5.3. If f is in the domain of L on a subinterval I of
[a, b] and f is sub-(L) on I, then a necessary and sufficient condition
that f fail to be strictly sub-(L) on I is that there be a nondegenerate
subinterval of I on which Lf(x) = 0.

If / fails to be strictly sub-(L) on /, then there are points xx < x2

in /such that if y12 is the solution of (4.3), then f(x) S yJix) on [ x̂, 2̂]
and there is a point x0 in (xu x2) at which f(x0) = y12(x0). If φ = Lf,
then φ — L(f — y12), and if g is the Green's function for (4.2), then

S x2

g(x, t)φ{t)dt

on [xu x2]. But then

S x2

g(x0, t)φ{t)dt = f(xQ) - yi2(x0) = 0 ,

and, since g(xo,t) and φ do not change sign on [#icc2], it follows that
g(x0, t)φ(t) = 0 on.[xux2]. Now, the restriction of g(xo,t) to \xu x0],
using the appropriate one-sided limits at xOf is a solution of Ly = 0.
Hence, if g(xQ, t) vanishes on some subinterval of [xu x0], then g(xQ, t)
vanishes identically on [xly xQ], Since at least the first n — 1 deriva-
tives of the function g(x0, t) are continuous at x0, is follows that on
[x0, x2], the function g(xOf t) is a solution of

Ly = 0

D'-Wxo) = 0 = D^y(x2) , j in {1, , n} ,

so g(xo,t) = 0 on [xo,#2] ^s well. But then g{x^t) = 0 on [cci,cc2], which
violates the discontinuity condition which the function /*i[#(£0)] must
satisfy at x0. Correspondingly, the assumption that g(x0, t) vanishes on
some subinterval of [x0, x2] leads to a contradiction, so that any sub-
interval of [x19 x2] contains a point t at which g(xO11) Φ 0, which im-
plies that φ vanishes at this point. Hence, φ is a continuous func-
tion whose set of zeroes is dense in [xu x2], so φ(x) = 0 on [xl9 x2].
This, in turn, implies that f(x) = y12(x) on [xu x2] and Lf(x) = 0 on
\Xί9 Xϊl

The sufficiency of the condition is obvious.
It is to be remarked that the result of Theorem 5.3 is weaker

than the result that might be expected for sub-(L) functions. In the
classical case where L = D2, any convex function which fails to be
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strictly convex must be a solution of D2y — 0 on some interval of its
domain, and in [5] Reid generalized this statement exactly for a second-
order Euler-Lagrange operator. However, for higher-order operators
a generalization stronger than the above theorem is not immediately
apparent.

6* Variational properties of sub-(L) function* In addition to
the classes Δn[c,d], Δ%[c,d], we shall be concerned with the class Δ%[c,d]
consisting of those functions w in Δ%[c,d] for which w(x) ^ 0 on [c,d].
If M is any real linear functional on any of these three classes, then
M is positive definite if and only if M[w] ^ 0 whenever w belongs
to the given class with equality holding only if w — 0. The next two
preliminary results are analogues of those in Reid [5], and the proofs
are nearly identical to his.

THEOREM 6.1. The statement that L is nonoscillatory is equivalent
to each of the following conditions:

( i ) (fly holds;
(ii) For each subinterval [c, d] of [α, b], the functional Icd is

positive definite on 4J[c, d].

Since the system (3.3') is identically normal and the matrix B(x) ^ 0
on [a,b], it follows from Theorem 5β2 of Reid [6] that the nonoscillation
of L is equivalent to each of the conditions (i) and (ii).

THEOREM 6.2. The condition (H^ implies that if [c, d] is a sub-
interval of [a,b] and fedn[c,d], then the following conditions are
equivalent:

( i ) Iedbf] ^ Iedlf] whenever y - / e Jf[c, d].
(ii) // Jcd is the bilinear functional defined on Δn[c, d] x Δn\c, d]

by

then Jcd[(f, w)] Ξ> 0 whenever w e Δl\c, d].

lΐwe Δ%[c,d], then Icd[w] ^ 0 by Theorem 6.1. Also, if we lf[c,d]
and t is any positive number, then tw e J?[c,d]. The result then follows
from the identity

W + *w] = Icd[f] + 2tJea[(f, w)] + tflcd[w] .

We now obtain a characterization of sub-(L) functions which are
in the domain of L in terms of unilateral variational property.
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THEOREM 6.3. If (H^ and (H2) hold and f is a function in the
domain of L on a subinterval [c, d] of [α, 6], then a necessary and
sufficient condition for f to be sub-(L) on [c, d] is that

(6.1) Iedlv] & IcJίf] whenever y -fe J?[c, d].

If weΛH[c, d], then

which, by definition, means that

Therefore, Jea[(f, w)] Ξ> 0 for every w in Jf[c, d] if and only if
( — l)nLf(x) ^ 0 on [c, d]. The conclusion then follows from Theorems
5.1 and 6.2.

It would be desirable to remove the condition that / belong to the
domain of L from the hypothesis of this theorem. One possibility which
might be examined is the simple case where L = D2n, for if / e An[c,d],
w e J?[c, d], po[f] = pQf, and

for i in {1, , n}, then

J.a[(f, V>)] =

which is of the form

\dDnwDnφ ,
J β

exactly that which arises in considering the case L = D2n. It is to
be noted, however, that the "sufficiency" part of Theorem 6.3 does
not require / to be in the domain of L.

THEOREM 6.4. If (HJ and (H2) hold and feΛn[c,d], then f is
sub-(L) on [c, d] in case (6.1) holds.

Suppose c ^ x± < x2 ^ d and y12 is the solution of (4.3). Let t be
an arbitrary point in (xu x2), and let wt be the function whose value
at x is zero outside [xu x2] and is ( — l)nJrlg{x, t) on (xux2)y where g is
the Green's function for (4.2). Then wt e J?[c, d] by Theorem 5.2, so
that
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0 :£ Jea[f, Wt] = (-l)«+f Σ D^i+1[g(t)]T -fit) .

But, for arbitrary w in Δl\c, d],

[ n-l "Id

ΐ=o Λc

In particular,

0 = Jcd[Vi2, Wt] = ( - i r

and, in view of the^boundary conditions of (4.3),

0 £ y12(t) - f(t) .

Hence, / is sub-(L) on [c, d].

7. Strong nonoscillation of L. Under hypotheses (Hx) and (H2)
we are able to conclude that the null-space of the operator L is a 2n-
parameter family on [a, b], i.eβ, that there is exactly one solution of
Ly = 0 which assumes 2n given values at 2n given (distinct) points of
[a, 6]. We first establish the following result, the proof of which is
modeled after a proof of Polya [3].

THEOREM 7.1. Suppose (H2) holds, {zu , zn} is the basis for the
null-space of Lo* given by (3.11) and, for each k in {1, • *,n},Zk is
the set of all linear combinations of {zk, , zn}. If ze Zk, then either
z(x) Ξ 0 or else z has at most n — k zeroes on [a, b]. In particular,
if a Ss tt < t2 < < tn ^ b, then the n-point boundary-value problem

(7.1) Uz = 0 , z(U) = 0 , i in {1, . .-, n} ,

is incompatible.

If z — cnzn then, since zjx) > 0 on [α, 6], either z(x) = 0 or else z
vanishes nowhere on [a, b]. Assume that k + 1 is an index for which
the assertion is true and suppose ze Zk1 say z = J^=k CjZj. If ck = 0
then z e Zk+1, so either z(x) Ξ O or else z has less than n — k zeroes
on [α, 6] If ck Φ 0, then z(x) ί 0 and we may write zk = (lfck)z — zQ,
where z0 = Σj=k+i (Cj/ck)zj. If it were possible that there exist n — k + 1
points tu t2, , tn_k+1 at which z vanishes, then zk + z0 would also vanish
at these points and, as in the proof of Theorem 4.1, there would exist a
point t intermediate with respect to {t1912, , tn_k+1} at which Γn__k[zk +
zo](t) = 0. But the proof of Theorem 3.3 shows that Γn_kz3- = 0 if
j ^ k + 1 and Γn_kzk = 1. In particular, Γn_k[zk + zQ](t) = 1, a con-
tradiction.
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THEOREM 7.2. Under (HO and (H2), if a^x,<x2< < xm ^ b
and, for each i in {1, , m}, λ{ e {1, 2, , n + 1} such that ΣΓ=i \ =

fte m-point boundary-value problem

(7.2) ^ = ° '
D'-WXi) = 0 , ϋ w { l , , m } , i w { l , , λ j ,

is incompatible.

It will be shown that if y is any function in the domain of the
operator Lo which satisfies the boundary conditions of (7.2), then there
exist n points of [a, b] at which LQy vanishes.

Let v — max {Xu λ2, , λm}. If v = 1, then m — 2n, and repeated
application of Rolle's theorem using the decomposition (3.9) gives the
result. If v > 1, then for each k in {2, , v) let ak denote the number
of points Xi at which Xi — k, and for j in {1, 2}, let s3-tk denote the set
of integers r with j ^ r ^ v and r Φk. Now, if £ is an index such
that Xi = k then, by (3.10), Λόy{x%) = 0 for i in {0,1, • , k - 1}, so
Rolle's theorem implies that Aλy vanishes at β1 — m — 1 + Σfc=a αfc
points of [a, b]. It will be shown that for each j in {1, •••, v — 1},
Ajy vanishes at

βi = m - i + fi Φ - l)α 4 + i Σ αfc
Λ=2 k=3+l

points of [α, δ]. Since the assertion is known for j = 1, assume that
it holds for some j in {1, ••-,!; — 2}. Applying Rolle's theorem, ^y+ii/
must vanish first of all at βs — 1 points, none of which will be an x{

with X{ ^ j + 2. But Λi+17/ also vanishes at exactly these points x{ as
well, and it follows that

βj+1 - m - j - 1 + Σ (k - l)α* + j Σ «* + Σ au
k k j+2 l j + 2

3 + 1 V

= m-j -1 + Σι(k- l)ak + (j + 1) X α* .

In particular, Av_λy vanishes at

/3v-i = m - (y - 1) + Σ (fc - l)ak

points of [α, δ]. But

α* = g [Π.1>4 (λ, - r)/(fc - r)] ,

so

(ft - l)ak = Σ [ Π . . (λ4 - l)(λ4 - r)/(fc - r)] .
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Hence,

&_! = m - (v - 1) + g | Σ [IL2,fc (λ, - r)/(fc - r)]J(λ« - 1) .

The expression in braces is a polynomial in λ< of degree at most v — 2
which has the value 1 for each of the v — 1 values λ4 = 2, 3, •• , v.
Hence, this expression is identically 1 in Xi9 and

βM = m - (v - 1) + Σ (λ< ~ 1) = 2n - (i; - 1) ,

i.e., Λ-i2/ vanishes at 2n — (v — 1) distinct points of [α, 6], The same
use of Rolle's theorem as that for the case v — 1 now gives the con-
clusion that Loy must vanish at n distinct points of [α, 6].

If y satisfies (7.2), then z = Loy satisfies (7.1) for some set {tu , tn}
of points in [α, 6], so z = 0, i.e., Loy — 0, and, by Theorem II of Polya
[3] for the operator Lo, it follows that y must also vanish identically.

In particular, the problem (7.2) with m = 2n is incompatible, and
the elementary solvability theorems for vector differential systems imply
that the null-space of L is indeed a 2n-parameter family. Hence, it is
possible to examine L-convexity in the sense of Tornheim [7] and Hart-
man [2], whereby a function / defined on an open subinterval (c,d) of
[α, b] is L-convex if and only if for every set of 2n points x^x2< <x2n

of (c,d), if y is the unique function satisfying

then

(~iYy(x) ^ (~lYf(x) on (xifxi+1).

However, the exact relationship between the two types of convexity
remains undecided.

It is also natural to ask about the properties of the operator L —
(— l)nLQL*. It is easily seen that Ly — 0 is equivalent to an identically
normal system of the type (2.6') and that if U and V are as specified
in (HO then (ί/*"1; 0) satisfies an analogous condition (Hi) for L. More-
over, in the notation of (2.8), if {zu -- , 2 j is contained in the domain
of Lo* then for each k in {1, , n} we define the "generalized Wrons-
kian" W*(zn, zn_u , zn_k+1) to be the determinant of the k x k matrix
[y*-i+i[3n-i+i]]iίi A I n particular, if {zu •••,««} is the basis for the
null-space of Lo* defined by (3.11) and W* = W*(zn,zn_ί9

 m ,zn_k+1),
then W* is equal to the lower right principal minor of order k in the
matrix C/"*"1. Hence, if 11 is the adjoint matrix of Z7* and Uk is the
lower right principal minor of order k in the matrix U, then a well-
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known formula (see, eog., Hohn's Elementary Matrix Algebra, p. 61)
gives

Wϊ = Ufc/(det Uy = (det Ur =

which, by hypothesis (H2), is positive. Thus, we have an analogue
(H2) of (H2). However, it is not evident that properties of convexity,
etc., with respect to L shed any light at all on the questions already
raised concerning L.
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