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ON THE CONSTRUCTION OF CERTAIN BOUNDED
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J.-P. KAHANE

We give an elementary method for constructing econtinuous functions
fulfilling the hypothesis of Theorem 1 of the preceding paper. Such
functions thus constitute counterexamples to the proposition and theorem
discussed therein.

THEOREM. Let () be continuously differentiable on [0, o), and
SUPPose

(i) 90)=0

(ii) ¢@'(x) is nonnegative, and strictly increasing to o on [0, )

(i) @' (@)/e(@) — oo, & — .

Put
(1) f(x)=§.2*’”eXp(2élfx>, <0
(2) fl@) = o= | 220.

Then the bounded continuous function f(x) has properties 1, 2, and
3 of Theorem 1 in the previous paper.

Proof. That 0csp f follows from (1) as in §2 of the previous
paper.
To establish property 3, let us show that

%ST fl@ + Qe — 0

uniformly in @ as T'— . If I is any interval of length 7, denote
by A the part of I lying to the left of 0, and by B that part lying
to the right. We have, by (1),

%Lf(x)dx - %{Tilﬂh 527 exp (%’fn_" Yaa} .

The quantity in brackets is always in absolute value =1, and tends
to zero independently of the position of A as | A|— co (this fact belongs
to the rudiments of the theory of almost periodic functions, and can
here be verified by direct calculation). Since |A| =< T, we have

(3) %—S f(x)dx — 0 independently of the position of [ as T— = .
A
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The integral S f(x)dx is bounded for all intervals B of the form
B
{0,5]. Indeed, if b > 1,

Swwmzwmm+xmmw

Since ¢'(x) = 0 we can, by (2), make the substitution @(x) = & in the
second integral on the right, getting for it the value

gbe“"(”’daﬁ _ r(b)e“ de .
Ji et @'(x)
In view of (ii), this last is in absolute value = 4/9'(1) by the second

mean value theorem. It follows that g Sf(x)dz is bounded for all inter-
B
vals B lying to the right of the origin, whence

(4) %S f(x)dx — 0 independently of the position of I as T — oo .,
B

From (3) and (4) we see that 1/T S f(x)dx is small in absolute
I
value for all intervals I of length T, if only T is sufficiently large,
which is property 3.
It remains to verify property 2. Weshow that if 0 < X, < -+« < X4
and the A, are complex numbers

(5) sup i A, ettt X

x>0 | k=1

=514,

So as not to lose the reader in details, we do this for the case M = 2;
it will be clear how to extend the reasoning to any value of M.

Let ¢ be given, 0 < ¢ < w/2, and, choosing a positive determination
of the argument, put, for k. =1,2,3, .-+

(6) a, = @"1<2ﬂ:k + argi— — a> — X

1

(7) MZQ%mmwm%+§—x.

1

Clearly a, < b, < @41, @, — = as k— o, and by (ii),

(8) b, —a,—0,k— o .
Also,
(9) FB(Aee=t i) = (1 — ) |4, for g, =2 =0b,.

I claim that @0, + Xi) — @la, + X)) — < as k— . If ¢>0,
by (ii):
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Pdato ., gt L g+o

P@ — @+ —p@) @@+ c)’
whence
(10) PEAO) g,
o' ()

in view of (iii). Since X, > X, there is, by (8), a ¢ > 0 such that,
for all sufficiently large k,c¢ + b, + X, < a, + X,. We thus have, from
(6), (7), (ii), and (10):

b, + X)) — pla, + X)
o(b, + X)) — pla, + X,) = 220
: P 20, + X,) — pla, + X.)

> 25 ggxbf EF LKI 4_ c) — 0O
P (bk + Xl)

as k— oo, since b,— co,k— co. This is the desired result which
implies, in particular, the existence, for all sufficiently large k&, of an
2y, € [ay, b,] such that

P, + X) = argAl (mod 27) .

2

For such z, we have A,e@x+¥2 = | 4,| which, together with (9), yields
(5) for the case M = 2, since € > 0 is arbitrary.

REMARK. Suppose @(x) is even, and fulfills condition (i), (ii), and
(iii) of the theorem. Besides this, let it be twice continuously differ-
entiable, and be such that ¢"(x) = C > 0 (example: ¢(x) = ¢*). Then,
if f(x) = ¢, e is not, for any nesp f, in the weak closure of any
bounded subset of V, (notation as in the preceding paper). (This
observation is due to P. Koosis.)

Indeed, the function f(x) clearly has property 2, according to the
above work. A glance at the proof of Theorem 1 in the preceding
paper now shows that the desired result will certainly follow if we
establish, for all real \, that

%STf(x + X)e~*dx — 0 uniformly in X as T— . But by a

lemma of Van der Corput ([1], vol I, p. 197),

[(otoenngo| < 12-{ int oo+ 1)} 5 12077

0 0sz=T

for all T, which implies the desired statement.
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