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DERIVATIONS AND INTEGRAL CLOSURE

A. SEIDENBERG

Let #” be an integral domain containing the rational num-
bers, ' its quotient field, D a derivation of 2, and <7’ the ring
of elements in 2 quasi-integral over <7, It is shown that if
D7 < &, then D' < 7/,

According to a lemma of Posner [4], which is also used by him
in a subsequent paper [5], if < is a finite integral domain over a
ground field F' of characteristic 0 and D is a derivation over F' sending
¢ into itself, then D also sends the integral closure of £ into itself.
The proof of this in [4] is wrong, but the statement itself is correct
and a proof is here supplied. More generally it is proved that if <
is any integral domain containing the rational numbers and D is a
derivation such that D#&”c &7, then D&’ < &', where &' is the ring
of elements in the quotient field ¥ of <’ that are quasi-integral over
. The theorem is not true for characteristic p == 0, but if one uses
the Hasse-Schmidt differentiations instead of derivations, one gets the
corresponding theorem for a completely arbitrary integral domain .

Let ¢ be an arbitrary integral domain containing the rational
numbers, and let ¢ be the integral closure of ¢”. The question
whether D& c @ implies D7 © ¢ is related to the question whether
the ring of formal power series <”[[t]] is integrally closed. Thus
consider the statements:

A. For every &, D& & implies Do &7, and

B. For every &, 2[[t]] is integrally closed. We show that A
and B are equivalent statements. (We also show: C. If Z[[¢t]] is in-
tegrally closed, then Do C & implies Do < 7)) Now according to
the last exercise in Nagata’s book Local Rings, [3; p. 202, Ex. 5],
B is a true statement, but we give a counter-example, which also
leads to a counter-example for A.

2. Criticism of Posner’s proof. Posner purports to prove that
if P is a place of the quotient field ¥ of < that has F as residue
field and is finite on ¢ and if geX is finite at P, then Dg is
finite at P. This is not so, as the following example shows. Let
¢ = F[X, Y] be polynomial ring in two indeterminates over F. Let
D =0/0X. Let P, be the place of FI(X,Y) over F(Y/X) obtained by
mapping X into 0, let P, be the place of F(Y/X)/F obtained by
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mapping Y/X into any element of F, and let P be the composite
place. Then X, Y, Y/X are finite at P, but o(Y/X)/0X = —Y/X*? is
not.*

One reason that Posner’s proof fails is that there are no parameters
such as those of which he speaks, except in the case that the degree
of transcendency of «7/F is 1. In that case, Posner’s argument yields
a proof.

3. A generalization. Let Z”be an arbitrary domain, with quotient
field 3. An element acX is said to be quasi-integral over & if all
powers of a are contained in a finite <*-module contained in X, or,
what comes to the same, if there is a de &, d == 0, such that da® e 7,
0=0,1,---,; (see [2]). If < is a Noetherian domain, then the con-
cepts of integral dependence and quasi-integral dependence (for ele-
ments in X) become the same; but it is the concept of quasi-integral
dependence, rather than that of integral dependence, which is adapted
to our considerations. The elements in ¥ that are quasi-integral over
¢ form a ring &', which in the case < is Noetherian is the integral
closure @ of <. The base field F' plays little role, and it will be
sufficient to assume that < containg the rational numbers.

THEOREM. Let & be an arbitrary integral domain containing
the rational numbers, let &7’ be the ring of elements in the quotient
field 3 of &7 quasi-integral over 7, and let D be a derivation of X.
Then: of Do C 7, then D' < 7.

Proof. Let X{[t]] be the ring of formal power series in a letter
t over 2 and let X((t)) be its quotient field. The mapping Je¢;t' —
Y(Det'y 1= 0,¢;,€2, is a derivation of X[[]] into itself and extends
D; it has a unique extension to X((f)), which will also be denoted D.
Let E be the expression 1 -+ tD + (¢}/2)D* + -.- (=e'®). Then a +
tDa + (t*/21)D*c + .-+, to be denoted FE«, has a meaning for every
a € X[[t]], i.e., the partial sums converge in the topology defined by
powers of (t); and the mapping o — Fa is an isomorphism of J[[t]]
into itself, as one easily verifies.” Its unique extension to 2X((¢)) will

! Far from all, or even infinitely many, valuation rings B centered at (X, 7Y)
being sent into themselves by D = §/0X, there is one and only one. In fact, re-
stricting oneself to valuation rings 8 centered at (X, Y), if DB C 9, then X/Y & B,
since D(X/Y)=1/Y ¢ B. Hence Y/Xe&9®, and therefore D(Y/X), D%(Y/X), etc. are
also in 8. Since D*YY/X)=cnY/X" (cn€K), (Y )2n v(X) for n=1,2, ---, where
v is the valuation corresponding to 8. Thus B could not be other than the ring of
the valuation in which v(X) is infinitely small with respect to #(Y); and for that
ring one checks that DB c ®.

2 We only use that a« — Ea is a monomorphism, but it is actually onto 3[[¢]] as
one sees from the identily e!?(e~tPa) = a.
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also be denoted E. Since DZC ¢, one has DZ[[t]] < <7[[t]], and
since ¢ contains the rationals, EZ7[[t]] < <[[t]]. "

Let a be quasi-integral over ¢, and let de¢” be such that
dore, p=0,1,---. Then E(da*) = Ed(Eayec”[[t]], 0=0,1,---.
Hence dEd(Ea — a)ye Z[[t]]l,0 =0,1, ---; here we use that d and
Ed are in ¢7[[t]]. The coefficient of ¢ in dEd(Fa — a), i.e., the
leading coefficient, is d*(Da)®; and this coeflicient, as well as all the
others, are in #”. Hence D« is quasi-integral over <.

COROLLARY. If de & and a € 3 are such that da‘e ~,1=0,1,---,0,
then d*(Da)'e 7,1 =0,1,+--, 0.

Let € ={¢c|ce ¢’ ©’}; then € is an ideal, which in the
case ¢ is the integral closure <7 of ¢ is called the conductor of <.

COROLLARY. If DZC 7, then DEC €. In other words, € is a
differential ideal for any derivation (or any family of derivations)
sending & into itself.

Proof. If ¢ce@® and ac”’, then (De)a = D(ca) — cDae &7, so
that also (De¢)2’ c 2.

The last corollary can sometimes be used to prove that a given
integral domain 7 is integrally closed (see [4]). We first restrict
ourselves to a class of integral domains ¢ such that & = ¢, for ex-
ample, the class of Noetherian domains. Then we restrict ourselves
further to a class & of domains < such that < has a conductor
22 # (0), or equivalently, such that < is contained in a finite -
module (contained in J), for example, the class of finite integral
domains (see [7; p. 267]), or quotient rings thereof, or the class of
complete local domains (see [3; p. 114]). (For examples of Noetherian
domains not having this property, see [3; p. 205 ff]; for an example
in characteristic 0, see [1]). Then we can state:

COROLLARY. Let & be an integral domain belonging to a class
% defined just above, let 7 contain the rational numbers, and let
{D} be a (fintte or infinite) family of derivations of < into itself.
Then, if & is differentiably simple under {D} (i.e., has no differential
ideal other than (0) or (1)), then & is integrally closed.

4. Extension of D to «7. The above is a simplification of our
original proof for a finite integral domain. The idea was that since
E sends <7[[t]] into itself, it also sends the integral closure of <7[[t]]
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into itself. It was then sufficient to prove that Z7[[¢]] is integrally
closed; in fact, we have the following theorem for any integral domain
& containing the rational numbers.

TuEOREM C. If 2[[t]] is integrally closed and Do>C o2, then
DZc 2. (Here & is the integral closure of &.)

Proof. If acl,a =¢/d,¢c,de , then Fa = Ec¢/Ed, so Ea is in
the quotient field of #7[[t]]. If « is integral over ¢, then Eua =
a +tDa + --- is integral over <?[[t]], hence in <?[[t]], whence Da e .

Our proof that <7[[t]] was integrally closed for <” a finite integral
domain depended on the following observation, which holds for an
arbitrary domain 2.

THEOREM. If & is completely integrally closed (i.e., if &' = &),
then so is Z[[t]]l. More generally, for any <, (Z[[t]]) < [[¢]].

Proof. Let «a(t) be quasi-integral over <7[[t]]. Then there is
a de Z|[t]], d = d(t) # 0, such that darec Z[[t]l, 0 =0,1, ---. Since
ordd + porda=0,0=0,1, ---, one first observes that @ e Z[[t]]. Let
d=dpt*+ d, "+ o-,d, #0, and let a =a, "+ a, 4" + ---. Since
the leading coefficient of da® is in 7, we have d,a’e 2, whence «, is
quasi-integral over <. Now « — a,t” is quasi-integral over <7[[t]],
whence «,,, is quasi-integral over ¢£”; and in this way one sees that
all the coefficients of « are quasi-integral over .

If ¢ is Noetherian, then so is ¢7[[t]]. Hence:

COROLLARY. If & is an integrally closed Noetherian domain,
then so is Z|[t]].

This is Nagata’s (47.6) in [3; p. 200].

Finally, if ¢ is a finite integral domain, then so is <7, whence in
this case <7[[t]] is integrally closed. Recalling that & is a finite -
module (see [7; p. 267]), one sees that <?[[t]] is even the integral
closure of <[[t]] in accordance with the following:

THEOREM. Let & be an integral domain whose integral closure
18 Noetherian and is a finite 7-module. Then the integral closure

of ZIitl s 2Lt

Proof. Let &= 2w, + +++ + Pw,. Then
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21l = alitlw, + -+ + Z[ltw, ,

whence Z7[[t]] is a finite <?[[¢]]-module and thus integral over <[[¢]].
Let d be a common denominator of the w,; when written as quotients
of elements in ¢”. Then dZ[[t]]c Z[[t]], whence <[[t]] and Z[[t]]
have the same quotient field. As we have already seen that ~7[[t]] is
integrally closed, the proof is complete.

Although not necessary for our considerations, we mention the
following:

THEOREM. If ¢ is a Noetherian domain, then 7[[t]] is integrally
closed, where t abbreviates a set t,, -+, t, of n distinct letters.

Proof. ¢ is a Krull ring (see [3; p. 118]), hence from the defini-
tion [3; p. 115], <%, is a Noetherian valuation ring for every minimal
prime ideal p of <. Moreover & = N ¢,, where the intersection is
taken over the minimal prime ideals of ¢ (see [3; p. 116]). Since
[[t]] is integrally closed, also Z[[t]] = N &,[[t]] is integrally closed.

Now consider the statements A and B mentioned at the beginning.
We say that A and B are equivalent. Recall that we are assuming
that < contains the rational numbers.

B = A, This follows at once from C, the first theorem of this
section.

A= B. Let a be in the quotient field of ~#7[[t]] and integral over
Z[[t]l. Then ae I[[t]l,« = @ + @it + ---. From an equation of in-
tegral dependence for @ on 7[[t]], by placing t = 0, one sees that
a,€ . Now apply A to the ring <[[t]] and the derivation D = 3/dt.
Then da/dt, °a/dt?, - - - are integral over <7[[t]], whence all the coef-
ficients of «a are in .

Now according to the last exercise in Nagata’s Local Rings, B
is a true statement; however, we will show that this is incorrect.

THEOREM. If ¢ is an (integrally closed) integral domain con-
taining o field and there is a nonunit be & such that (O (b°) +# (0),
then Z[[t]] is nmot integrally closed.

Proof. Let p be the characteristic and n > 1, an integer such
that n = 0(p). Then b” + b**t has an nth root a = b[1 + (¢/6°)]/" =
b[1 + c,(t/b?) + c(t*/b*) + - -] in X[[t]], where ¢, ¢,, -+ are in the prime
field of X and ¢, 0. If ae N (¢*) and a # 0, then aae Z[[t]], so
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that «a is in the quotient field of #[[t]]. Now a is integral over
Z[[t]], but is not in #7{[t]]. Hence £7[[t]] is not integrally closed.

THEOREM. Let B be a (proper) valuation ring containing o field.
Then B[[t]] is integrally closed if and only if B is of rank 1, i.e.,
if and only if there is no chain 0 < p, < p, < B of prime tdeals.

Proof. If B is of rank 1, then it is well-known and can be
checked at once, that B is completely integrally closed. Hence B[[t]]
is completely integrally closed, hence integrally closed.

On the other hand, if B is of rank > 1 and 0 < p, < P, < B is a
chain of prime ideals in B and be p, — p,, then p,C N (b°), whence
B[[t]] is not integrally closed.

To get a counter-example to Nagata’s last exercise, one has but
to take < to be a valuation ring of rank > 1 that contains a field.?

To get an example of a ring ¢ and derivation D such that D& c &
but D& &, let B be a valuation ring of rank 2 containing the
rational numbers, let ¢ = B[[t]] and D = 9/0t. Let b be a nonunit
in B such that N (b°) = (0), and let

" 2
a:(bz+ t)1/2:b[1+01£;+02%+ "'] )
where ¢, ¢,, +++ are rational numbers. Then « is integral over & =
B[[t]] but Da is not.

Concerning the proof spoken of at the beginning of this section,
the author is obliged to Professor Mumford for the remark in context
that if D is a derivation, then ¢”, formally at any rate, is an isomor-
phism. The introduction of the parameter ¢ on the one hand prevents
the computations from collapsing into meaninglessness, and on the other
allows one to recover D from e'?,

5. The case of characteristic p # 0. For p # 0, the theorem
of §3 is not true, even for curves. Thus consider the curve given
by Y? — X? — X* =0. One checks that Y’ — X* — X" ig irre-
ducible (over the ground field F'). Let (x,y) be a generic point of
the curve over F. Let D be a derivation of F(y)/F with Dy = 1;
since « is separable over F'(y), D can be extended uniquely to a deri-
vation, still to be denoted D, of F'(y,«). One finds —(p + 1)a"Dx =0,
hence Dx = 0. Let &= F[x,y]. Then D&ZC ¢”. Now y/x is integral

8 In reference to the exercise, Nagata [3; p. 221] cites Sugaku, Vol. 9, No. 1
(1957), p. 61, which we have not been able to locate; and while he notes that the
proof there is not complete, he remarks that “a supplement is expected to appear
soon”,
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over 7, since (y/x)’ =1 + x, but D(y/x) = 1/x is not, as otherwise it
would be integral over F[x].

However, if one uses the Hasse-Schmidt differentiations [6] instead
of derivations, one gets the corresponding theorem.* Recall that a differ-
entiation D of a field ¥ into itself is a sequence D = (,, 0;, 05, ++-) of
mappings of 2 into itself with ¢, = 1 and satisfying the properties:

0,(x +y) =00 + o,y
0,y = >, 0,205y .
iy
By Do’c ©~ we now mean 6,7 ¢ for every ¢. Then
E=0,+ to, + t%0, + -~

still yields an isomorphism and can be used instead of our previous E
to get the conclusion D’ < #'. (After obtaining §,27' < &' as be-
fore, we argue that d*Ed(Ea — o — té,x)’e Z|[t]], 0 = 0,1, -+ -, whence
dio,are, 0 =0,1, .-+, and d,¢ is quasi-integral over 7, ete.) In
the case of characteristic 0, the same argument shows one can drop
the assumption that < contains the rationals (i.e., if one uses differ-
entiations instead of derivations).

The corollaries of the theorem of § 3 also have easily stated gener-
alizations, with similar proofs.

REMARK. Since (1 + (1 + 4t)"®)/2 € Z][t]], the last two theorems
of §4 hold without the field condition.
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