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This paper treats linear quasi-differential operators of the
form

L[y] = Z V^vί3) - Σ ί W Σ
j=0 \j=0 \ \j=0

based on an integrable (m + 1) X (n + 1) matrix function [pij]9

(i — 0, , m; j=0, , ri), about which suitable regularity
assumptions are made. Results obtained by Reid (Trans. Amer.
Math. Soc. Vol. 85 (1957), pp. 446-461) are extended to operators
of the type considered here.

A generalized Green's function for the system [L[y] = 0,
y e £&} is defined, where & is a linear subspace of the
domain of L. Resolvent and deterministic properties of this
function are presented, together with the relationship of such
a generalized Green's function to the generalized Green's func-
tion for the associated adjoint system.

For a large class of two-point boundary problems in which
the boundary conditions involve the characteristic parameter
linearly it is shown that there exists a simultaneous canonical
representation of the boundary conditions for a given problem
and those of its adjoint; in particular, in the self-adjoint case
this canonical representation has the form of boundary con-
ditions and transversality conditions for a variational problem.
Finally, these results are applied to a two-point boundary
problem involving a differential operator of the type considered
in the paper of Reid above.

Since an important example of an operator of the form of L[y]
is the Euler operator in the calculus of variations, we shall refer to
such operators as quasi-differential operators of Euler type.

Section 2 gives a more precise description of the operator, and
Section 3 is concerned with a discussion of its adjoint. In particular
it is shown that if ϋ^0 is the class of functions y in the domain of
L with the property that the functions y, y'', - ,y{n~ι\ ym = Σι"=oPmjV{j),
V% = Σi=o PijVU) — y'i+i, (i = m — 1, , 1), vanish at a and at 6, and
if To is the restriction of L to i^0, then the adjoint operator To* is
given by
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214 JOHN S. BRADLEY

T0*[z] = L*[z] = Σ Vi^i] ~ ( Σ PUZM -( ( Σ Pi.*™]''')')' -
1=0 \i = 0 \ \i=Q / / /

Section 4 is a study of extensions of the operator To, and their ad joints»
Section 5 is devoted to generalized Green's functions for Euler type
quasi-differential systems and their ad joints, and extends the results
of Elliott [3] and Reid [5] to the case where the number of linearly
independent boundary conditions may differ from the order of the
differential equation.

Section 6 is concerned with a certain class of two-point boundary
problems in which the boundary conditions involve the characteristic
parameter linearly. It is shown that there exists a simultaneous
canonical representation of the boundary conditions for a given problm
and those of its adjoint; in particular, in the self-ad joint case this
canonical representation has the form of boundary conditions and
transversality conditions for a variational problem.

Finally, § 7 is devoted to an application of the results of § 6 to a
two-point boundary problem involving a differential operator of the
type considered by Reid in [7].

The symbol (£Λ, (n — 0,1, 2, •), will signify the class of complex-
valued functions defined on the compact interval [α, b] which have n
continuous derivatives. The set of functions y in &n~ι for which y{n~l)

is a.c. (absolutely continuous) is denoted by %n, (n — 0, 1,2, •••)• I*1

particular, GΓ0 and 2I0 will signify respectively the classes of continuous
and Lebesgue integrable complex-valued functions defined on [α, 6],
If / and g belong to §ί0 and f(x) = g(x) almost everywhere, we will
simply write / = g. If / is a complex-valued function on [α, δ], then
/ denotes the function with domain [a, b] whose value at x is the
complex conjugate of f(x). If u and v are functions on [α, 6] and
vue$lQ, then we define (u9 v) as

f6 -(u, v) = I vu .
Ja

Matrix notation will be used except where it is impracticable. If
M is a matrix, then the conjugate transpose of M is denoted by Λf *.
Vectors are treated as matrices with one column. The symbols En and
0mn are used to represent the n x n identity matrix and the m x n
zero matrix, respectively; the subscripts will be omitted when there
is no danger of confusion.

A matrix function is said to be continuous, integrable, etc. when-
ever each of its elements possesses the specified property. If A is an
a.c. matrix function, then A\x) signifies the matrix of derivatives at
values for which these derivatives exist and the zero matrix elsewhere.

2* Description of the operator* Suppose that [Pij], (i = 0, •••,
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m Ξ> 1; j = 0, , n ^ 1), is an integrable (m + 1) x (n + 1) matrix
function on a compact interval [α, b] and that pon and pm0 are essentially-
bounded. For suitable y in 3IW define functions yu " ,ym as follows:

(2.1) i/ yj+1 e 3I () ± )
.7=0

(i = m - l , ••-, 1) .

The class of functions 7/ in 3IΛ for which &, , |/m are a.c. will
be denoted by 3ΪΛ. For convenience the vector functions (2/(i~1})>
( i = 1, , ri), and (^), (i = 1, , m), will be denoted by # and #,
respectively; the (n + m)-vector function (y, , i/^"1^ ^ , , ym) will
be represented by y.

Denote by L the operator with domain 3ΪΛ which is defined by

(2.2)
J=0

The operator L is a quasi-differential operator in the sense of Bδcher
[1]; in particular, it is a generalization of the Euler operator in the
calculus of variations and, as was stated in the introduction, it will
be called a quasi-differential operator of the Euler type.

Let 31° be the collection of functions y in SίΛ for which y(a) = 0 =
y(b), and denote by To the restriction of L to 31°. Suppose that ϋ%*
is the class of functions z in 3I0 which are essentially bounded and
have the property that there exists a function fz in 2ί0 such that
(L[y],z) = (y,f,) for all y in %l

A second operator L* will now be defined. For suitable functions
z in §tTO define functions z19 * ,zn as follows:

»•(») = Σ p ίw(^)^(ΐ)(^)

(2.3) »/ z y + 1 e 2t1; then z^x) = Σ p i 3 (φ ( ί ) (a;) - z'3+1(x) ,

(y = n - 1, . . . , 1) .

The class of functions z in §tm for which z19 *',zn are a.c. will be

denoted by 2ίm. Let L* be the operator with domain 2Ϊm defined by

(2.4) L*[z] = £piξfi™-z'1.

If z e 2Im, then z and ? will signify the vector functions (z^-15),
(i — 1, , m), and (ϊy), (j = 1, , w), respectively. The (m + w)-
vector function (z, •• ,^ ( m"1 ), 2Ί, •••, zn) will be denoted by z.
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Except when a statement is made to the contrary, the following
hypothesis will be assumed throughout this paper.

HYPOTHESIS (H). The matrix [pi3{x)], (i = 0, , m; j — 0, , n),
is integrable and there exists an ε > 0 such that | pmn(x) | ^ ε almost
everywhere on [α, 6]. Moreover, pQn and pm0 are essentially bounded
and PinPΰlPmj is integrable, (i = 1, , m — 1; j = 1, , n — 1).

It is to be noted that if ye$ίn and z e 2ίm, then L[y] and L*[z]
are integrable.

Let J#Ί(x), J&ί(x), J#ϊ(x), and s/£x) be m x n, m x m, n x n,
and n x m matrices, respectively, defined as follows:

(i = 0, , m - 1; j" = 0, , n - 1) ,

s^{χ) = Γ _,!

- i / ^ ' (i = l,'~,m,-l),

(ή ~ 1 . . . <γ) — Λ\

If / and # belong to 3I0, then the equation L[y] = / is equivalent
to the following system in the vector functions y — (^), (i — 1, , ri),
and ^ = (^ ), (j = 1, -- ,m):

^ = 0 ,

and the equation L*[z\ = ^ is equivalent to the following system in
the vector functions z = (z3 ), (j — 1, , m), and z = (?y), (i = 1, ,n):

z'

where e{ktl), (k = 1, 2, 3, •), is used to denote the Jk-dimensional vector
whose first coordinate is one, and whose remaining coordinates are
zero. If ^f is the (m + n) x (m + ^) matrix

and Jzf is the (m + n) x (m + w) matrix function defined by
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then (2.5) and (2.6) may be written as

(2.8)

and

(2.9)

respectively.

Theorems on existence and uniqueness of solutions of L[y] = /
and L*[z] ~ g follow from corresponding theorems for the respective
first order systems (2.8) and (2.9). It also follows that y e 3ίn if and
only if there exists an integrable function / such that y is the first
coordinate of a vector function y satisfying (2.8), and ze$ίm if and
only if there is an integrable function g such that z is the first
coordinate of a vector function z satisfying (2.9).

The differential system (2.5) is identically normal in the sense
that if y(x) is a solution of £f\y\ = 0 with y(x) = 0 on a subinterval
X of [a, b], then y(x) = 0 on X. Indeed, if y is such a solution of
(2.5), then y is a solution of ψ — J^ζ^ = 0 satisfying J&Ίy — 0 on X.
This latter condition implies that ym(x) = 0 on this subinterval, and
the differential equation yr — S$?2y = 0 implies in turn that y3{x) = 0
on X for j = m — 1, , 1. Similarly, system (2.6) is also identically
normal. It follows from the identical normality of (2.5) that functions
ya in 2tΛ are linearly independent solutions of L[y] = 0 if and only if
the corresponding vector functions ya are linearly independent solutions
of JZf\y\ = 0. Similarly, it follows from the identical normality of
(2.6) that functions za in %m are linearly independent solutions of
L*[z] = 0 if and only if the corresponding vector functions za are
linearly independent solutions of j£f*[z] = 0.

3* The adjoint operator• If ^ is the (m + n) X (m + n)
matrix defined as in (2.7), then we may establish the following Lagrange
identity by a simple inductive argument which does not use hypothesis
(H).

LEMMA 3.1. If ye%n and z e %m1 then

(3.1) zL[y] - L*[z]y = (

THEOREM 3.1. // fe 2I0, then there exists a y in 21° such that
L[y] — f if and only if z in ttw and L*[z] = 0 implies that (/, z) = 0.
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Now if yeWn, L[y] = f, ze&mj and L*[z] = 0, then, in view of
Lemma 3.1,

(/, z) = (L[y], z) - (y, L*[z]) - z^y |£ = 0 .

On the other hand, suppose that (/, z) — 0 whenever z e 2ΪW and
L*[z] = 0, and let y be the function in §ίw such that L[y] = f and
y(a) — 0. If zj, (j = 1, , m + n) are linearly independent solutions
of L*\z\ = 0, then the (m + w) x (m + w) matrix Z(#) with column
vectors zXx), (j — 1, , m + w), is nonsingular on [α, &]. From
Lemma 3.1 we have the vector equation

0 - [(/, z,) - (y, L*[*y])] = ^ * ^ ^ It = Z*{b)^y{b) ,

and consequently y{b) = 0 also.

THEOREM 3.2. / / hypothesis (H) λoίds, £/̂ ew ^ 0 * = δ m and fz =

That ^ c ^ ί * follows from Lemma 3.1. Now let ^ e ^ o * and

suppose /zo is a corresponding function in 3ί0 such that (L[y], z0)—

(V, fz0) when 7/ e 2ί°. Choose ^ 0 in ftm such that L^[^o] = /β0, and

suppose that ^ e S m are linearly independent solutions of L*[Zi] = 0t

with (zif Zj) = δ,i, (i, i = 1, , m + n). ltw = w« + Σ ? i w f e - w0, Zj)zd,

then L^[w] = /β 0 and (z0 — w,z) = Q when « G Stm and L^[^] = 0. It

follows that if yeWn, then

(3.2) (L[yl s0) - (i/, /,β) - (yf L*[w]) = (L\y], w) ,

so that (!/[?/], 2;0 — w) = 0 when yeWn. But it follows from Theorem

3.1 that there is a function y in S° such that L[̂ /] = 20 ~ w. Con-

sequently (z0 — w, zQ — w) — 0 and 20 = w e 2tm, so that i^ά* = S w and

fgQ — L^[20]. This result extends Theorem 4.1 of Reid [7].

Now the operator Γo* adjoint to To is defined to be the operator

on ϋ%* with value fz at z. In view of Theorem 3.2 we have ^ * —

%m and Γ0*[ί5]

4* Extensions of the operator To. Let ^ be a linear subspace
of 3ln containing Sj, and denote by T the restriction of L to ^ .
Denote by £&* the class of functions z in 3I0 which are essentially
bounded and for which there exists an fz in 2ί0 such that (L[y], z) =
(y,fz) for all ?/ in &r. It follows from Theorem 3.2 that ^ * c t m

and for each z in ^ * there is at most one fz, namely L*[z], such
that (L[y],z) = (y,/β) for all 2/ in ^ . The adjoint T* of T is the
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operator on i^* defined by the formula T*[z] = fz. The operator T
is said to be self-ad joint if and only if 3f = 22* and T = T*.

The following lemma will be helpful in describing j ^ * . If y3 e SίΛ,
(j = 1, , m + w), then Ϋ" will denote the matrix function defined
b y Ϋ(x) = [ ^ ( x ) ] , (j = !,'••

LEMMA 4.1. // yj and ζ are (m + n)-vectors, then there exists
a function ye fίΛ, (ze$ίm), such that y(a) = ^ and ^(6) = ζ, (z(a) — 77
cί an^(δ) = ζ).

Since Stw is a vector space it is enough to show that there exist
m + n functions y3 in %n such that y3(a) = 0, (i = 1, , m + n)
while F(6) is nonsingular, and to show a corresponding result with a
and 6 interchanged. To establish the existence of functions y3- in Sί*
such that yό(a) = 0, (i = 1, , m + n), and Ϋ(b) is nonsingular,
suppose to the contrary that for each collection of m + n functions
y3 in fίn satisfying ^^α) = 0 , (j = 1, ,m + n), we have F(δ) singular.
Let Zj be m + n linearly independent solutions of L^[z] — 0, and for
j — 1, , m + n let 7/y be the function in %n such that L[y3] — z3

and ^i(α) = 0. Then there is a nonzero (m + ^)-vector ξ = (f5 ) such
that Γ(δ)f = 0. If y(x) = 2,Γ=+iw yy(a?)ίy and z(x) - Σ?Λ% (»)fi» t h e n

L[y] = 2, L [̂«] = 0 and s(a ) ^ 0, moreover, y e %°n. Hence it follows
from Lemma 3.1 that

which is impossible since z(x) ^ 0. The numbers a and b may be
interchanged and the preceding argument remains valid. The result
for 3tw follows by interchanging the roles of St% and Sw, that is, by
replacing [p{j] with [p^]*.

Denote by & the subspace of 2(m + w)-dimensional complex space
consisting of the end values (y(a), y(a), y(b), y{b)) for functions y in £2ί.
Similarly, ^ * will denote the subspace of end values (z(a), z(a), z(b), z{b))
for functions z in ^ * . If k < 2m + 2n and the dimension of & is
2m + 2n — k, then let P and Q be (m + n) x (2m + 2n — k) matrices
such that the columns of [-P*Q*]* form a basis for &. If k > 0
also, then let M and JV be k x (m + n) matrices such that the
k x 2{m + n) matrix [MN] has rank k and MP - NQ = 0. Then in
view of Lemma 4.1 we have that 3f is characterized as the class of
functions y in Un with the property that

(4.1) s(y) = My(a) + Ny(b) = 0 .

If k = 0, then by Lemma 4.1 we have 3f = 2t%.



220 JOHN S. BRADLEY

THEOREM 4.1. Dim & + dim ^ * — 2m + 2n; if dim & > 0 and

P, Q are (m + n) x (2m + 2w — k) matrices such that the column
vectors of [—P*Q*]* from a basis for &, then £&* is the class of
functions z in §ίm for which

(4.2) P*^*g(α) + Q*^*z(b) = 0 .

First note that if dim & = 0, then ^ * = 2Im by Theorem 3.2,
and thus by Lemma 4.1 we have dim έ%* — 2m + 2n. Now suppose
that dim & > 0, z e tίm, and (4.2) holds. Then for y in &r and £ a
(2m + 2n — Λ)-vector chosen so that y(a) — — Pf and ?/(&) = Qξ it
follows from Lemma 3.1 that

, z) - (y, L*\z\) = z V ^ |ί = {P*^*z(a) + Q*^*z(b)}*£ = 0

and hence ze £&*. On the other hand, if ze 3ϊ* then it follows from
Theorem 3.2 that ze$Ln, since S ^ c ^ . Then (4.2) follows from
Lemma 3.1, Lemma 4.1 and the choice of P and Q. Therefore, in
view of Lemma 4.1, it follows that dim & + dim ̂ * — 2m + 2n.

COROLLARY I. If dim & > 0, and R and S are (2m + 2n — k) x

(m + n) matrices, then &* is the collection of functions z in 2ίm

for which

(4.3) 222(α) + Sz(b) - 0

i/ and only if the (2m + 2n — k) x 2(m + w) matrix [R S] has rank
2m + 2n-k and M^f*R* - N^*S* = 0.

COROLLARY II. The adjoint of T* is T.

The index of compatibility for a system L|j/] = 0, y e 2$ is defined
to be dim {y : y e & and L[τ/] = 0}. The next two theorems are con-
sequences of the equivalence of the equations L[y] = / and L*[z] — g
to the systems (2.8) and (2.9), respectively, and corresponding theorems
on first order systems. Analogous theorems for wth order linear dif-
ferential equations are given in [2, Chapter 11], and those results
may be extended to first order systems.

THEOREM 4.2. // dim ̂ * = k and the index of compatibility of
the system L[y] — 0, y e £2ί is r, then p ~ k + r — m — n is the index
of compatibility for the system L*[z] = 0, ze ^ * .

THEOREM 4.3. If fe%, then there exists a function y in &
such that L[y] = / if and only if (/, z) — 0 for all z in 22 * satis-
fying L*[z] = 0.
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The next two theorems are analogues of Theorems 6.1 and 6.2 of

Reid [7]. The second of the two gives necessary and sufficient condi-

tions for the operator T to be self-adjoint when [pi3{x)] is Hermitian.

If y,-e 2ίw and Ϋ = [yj], (j = 1, , m + ri), then the symbols s(Y)

and s~(Ϋ) are used for the k x (m + n) matrices M Y(a) + NY(b)

and MΫ(a) - NΫ(b), respectively. Similarly, if Z;eS m and Z = [z3],

(j = 1, , m + n), then ί(Z) and ί~(iΓ) denote # l ( α ) + SZ(b) and

- SZ(b), respectively.

THEOREM 4.4. Suppose that 2(m + w) > dim & > 0, $/,• α^cί s,-,
(j" = 1, , m + ri), are linearly independent solutions of L[y] = 0
α^ώ L*[z] = 0, respectively, and let A — (Z*c:/

rΫ)-1. Then A is
constant on [α, b] and 22* is the collection of functions z in 9ϊm

satisfying (4.3) if and only if the (2m + 2n — k) x 2(m + ri) matrix
[R S] has rank 2m + 2n — k and

(4.4) s{Ϋ)A{t-{Zψ + s-(Ϋ)A{t(Z)}* = 0 .

THEOREM 4.5. Suppose that m — n, [Pij(x)], (i,j = 0, , n;

x e [α, &]), is Hermitian and dim & — 2n. Let yjf (j = 1, , 2ri), be

linearly independent solutions of L[y] = 0, and let A = (Ϋ*cJ?rΫ)-1.

Then A is constant on [a, 6], and T is self-adjoint if and only if

the 2n x 2n matrix s~(Ϋ)A{s(Ϋ)}* is Hermitian.

5* Generalized Greenes functions* The subspaces 3$, 2ϊ* of
%n and %m, respectively, and the subspaces &?, έ%* of 2(m + n)-
dimensional complex space are as defined in § 4. If 0 < dim ̂ < 2m +
2n, then the matrices M, N, P, and Q are as specified in § 4.

If /e2I 0 then we are concerned with solutions of the quasi-
differential system

(5.1) L[y]=f, y e ^ .

Of prime importance is the homogeneous system

(5.2) L[y] = 0, ye^r,

and its adjoint system

(5.3) L*[z] = 0, ze^r*.

By definition a generalized Greeris function for the system (5.2)
is an essentially bounded and measurable function g on • =
{(x, t): a g x g by a ^t Sty with the property that if f is a function
in Sϊo for which (5.1) has a solution, then a particular solution y
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of (5.1) is given by

(5.4) y(x) = [ g(x, t)f(t)dt .

Reid [5] has shown the existence of a generalized Green's
matrix for a compatible first order system with two-point boundary
conditions, where the number of independent boundary conditions is
equal to the number of differential equations. If dim & — m + n,
then Reid's results could be used to obtain a generalized Green's
function for (5.2). In this section the existence and some properties
of a generalized Green's function will be shown when dim & is not
necessarily equal to m + n. The technique used here may be modified
to extend Reid's results to the case where the number of independent
boundary conditions is different from the number of differential
equations.

For a vth order linear differential operator Σ}=0 Qj(χ)y{j) with
Qj £ Cjf (j — 0, 1, , v), and qu{x) Φ 0, the generalized Green's function
has been treated by Greub and Rheinboldt [4] and Wyler [10] a
more comprehensive treatment of an algebraic theory of operator
solutions of boundary problems, which includes this case as a special
instance, is given in Wyler [11],

LEMMA 5.1. / / yh (j — 1, , m + n), are linearly independent
solutions of L[y] = 0, then there exist m + n linearly independent
solutions Zj of L*[z] — 0 such that

(5.5) Z*^Ϋ = Em+n.

This result follows from Lemma 3.1 and the existence and uniqueness
theorems for the equations Jzf[y] = 0 and £f*\z\ = 0.

If yά e S n and zό e 2ίw, (j = 1, , m + ri), then define matrix

functions Ϋ, Ϋ, Z, and Z as follows: Ϋ(x) = [yd(x)], Ϋ(x) = [y3(x)]>

Z(x) = [zs(x)]f and Z(x) - [zό{x)l (j - 1, , m + n).

COROLLARY. / / y5 and zjy (j — 1, , m + n), are as in Lemma
5.1, then

Ϋ(x)Z*(x) = 0%m , Ϋ(x)2*(x) = En ,
( } Ϋ(x)Z*(x) = ~Em , Ϋ{x)Z*(x) = 0mn .

THEOREM 5.1. If τ e [a, 6], ξ3- is a constant, y3 and zjf (j — 1, *,
m + ri), are as in Lemma 5.1, then the solution y of L[y] = f satis-
fying y(τ) = Xiΰiw Vj(τ)ξj is given by the first component of the
vector
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(5.7) y(x) = " Σ yj(χ)ξj + f" " S Vi(aO*i
3 = 1 J r 3=1

Indeed, if ξ = (fy), (j" = 1, , m + w), and we set y(x) = F(x)u(x),

for % an (m + %)-vector function, then y is a solution of j£f[y] — fe{mJrn>1),

y(τ) — Ϋ(τ)ξ if and only if

u(τ) = ζ .

Hence u'(x) = Z"(x)e{m+n^f(x) and

u(x) = ξ+ \* Z1'(s)eim+n'1)f(s)ds ,

from which the theorem follows.
Now suppose that yj9 (j = 1, , m + n), are linearly independent

solutions of L[y] = 0 and that zjy (j = 1, , m + ri), are chosen as

in Lemma 5.1. If dim ^— 2m + 2n — k, k > 0, then s( F) and s"(F)

are k x (m + n) matrices defined as s( Ϋ) = I 7 ( α ) + NΫ(b) and

«-(Γ) = I 7 ( α ) - NΫ(b). If r is the index of compatibility for (5.2),

then s(Ϋ) has rank m + n — r. If r > 0, then let S be an (m + n) x r

matrix with the property that S*S = Er and s(Ϋ)S = 0. If r>m+n — k,

then Γ will represent &kx(k — in — n + r) matrix such that T*T =

Ek_m_n+r and T*s(Γ) = 0. It follows that the (fc + r) x (fc + r)

matrix

<5.8)

is nonsingular, and its inverse is of the form

<5 9) [?* o
The (m + ri) x k matrix D is the generalized reciprocal of s( Ϋ) in the
sense of E. H. Moore, (see [9, Section 14]). If r = 0, then the matrix
S does not appear, if r = m + n — k, then T does not appear.

Now if dim & < 2(m + ri), let G(xy t) be the (m + n) x (m + n)
matr ix defined by

G(x, t) = —Ϋ(x)\ X ~ ' ^ W + M + D s - ( Γ ) p * ( ί ) , ! t # ί ;

G ( » , * ) = —Ϋ(x)Ds-(Ϋ)Z*(x) , xe[a,b].
Δ

If dim & — 2(m + ri), let G(α, ί) be defined by
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G(x, t) = L\£lllLγ(x)Z*(t) , x Φ t
2 α - t

G(x, x) — 0 , see [α, 6].

Let g0 be the function with domain • whose value at (as, t) is
the element in the first row and first column of G(x, t), that is

ffo(α, t) = flrOfi(», *) + ffo,2(«ι t) if dim ^ < 2(ra + w) ,

^o(^, t) = go,i(%, t) if dim & = 2(m + n) ,

where

gO}1(x, t) = — sgn (a? - ί) J , ^(x)^(ί),
Z i

<7o,2(£, ί) = 4 Σ Vi

provided [^*y] is the matrix Ds~(F) and sgnu = \u\/u for
sgn 0 = 0.

THEOREM 5.2. The function g0 defined above is a generalized
Green's function for (5.2).

If dim <3£ = 2(m + ri), then this result follows directly from
Theorem 5.1. Now suppose that dim £§ < 2(m + n), and / is an
integrable function for which (5.1) has a solution. If y is a solution
of L[y] — /, then for a suitable vector ζ one has

y(x) = ±-\γ(x)ξ + \XY(x)Z^(t)e{m+^f(t)dt-ΓΫ(x)Z*(t)e<»+**f(t)dt\ .
2 L Jα J α; J

Thus, since (5.9) is the inverse of (5.8), it follows that y is a solution
of (5.1) if and only if

_ Cb „

s ( i ) I ZJ \t)e y j\t)Cbu — u ,
Jα

and for some r-vector η we have

Jα

Therefore,

- F(aOZλr(Γ)

X — t
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from which the theorem follows since rj may be chosen to be zero.
The symbol g{oiJ) will be used to signify the partial derivative

di+jgQ/dt3dx\ Generalized partial derivatives g(

o

a>β> will now be defined
for 0O. If a < n and β < m, then g\a'β\x, t) = g(

o

a'β)(%, £). If oc <n,
then g(

o

a>m+j\ (j = 0, , n — 1), is defined as follows:

gia m\x, t) = X &.(%*"•"(*, ί)
i = 0

if <̂« »-1+ '> is a.c. in its second argument, then

gi"'m+»(x, t) = Σ P1.-ί(ί)fliβ>"(a!, *) - d/dt {β"~-1+i>(x, t) ,

(j = l, ,n-l).

If β < m, then ^ M + < β>, (ΐ = 0, , m — 1), is defined as follows:

if .g<*-1+*'.β> is a.c. in its first argument, then

g<^\x, t) = g pm^Ax)9{oJ>β)(x, t) - d/dx gϊ-^ix, t) ,

THEOREM 5.3. 1 / α + / 3 ^ m + n — 2, ami gr0 is the function

of Theorem 5.2, then g{

o

ayβ> exists and is continuous on Π.

This result clearly holds for g0f2, hence one need only consider
specifically gQιl. Let a + β ^m -\- n ~ 2, and suppose first that a < n.
If /3 < m, then the theorem follows from the fact that ί ^ ) ! * ( x ) = 0.
If /3 = m — 1 + j , (j — 1, , n — a — 1), then use the identity
Ϋ(x)Z*(x) = Em. On the other hand, if β < m and α = n - 1 + i,
(i = 1, , m - /3 - 1), then use the identity Ϋ{x)Z*{x) = —Em.

THEOREM 5.4. The generalized Green's function for the system
(5.2) is not unique. If u19 •••, ur form a basis for the solutions of
(5.2), vu •••, vp form a basis for the solutions of (5.3), and gQ is one
generalized Green's function for (5.2) then a function g on D is also
a generalized Green's function for (5.2) if and only if there exist
essentially bounded and measurable functions ψu , φr, φu , φ9

such that if (xyt)e D, then

(5.10) g(χ, t) - go(x, t) + Σ ^ii^HS) + Σ 9>i(*)^(t) .
i=i i=i

If 5r is a function on Π satisfying (5.10), then in view of Theorem
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4.3 it follows that g is a generalized Green's function for (5.2).
To establish the converse we may assume without loss of generality

that (ui9 iij) = δiif (i, j = 1, , r), and (va, vβ) = daβ, (a, β = 1, , p).
If w 6 2t0 and f(x) = w(a?) - ΣS=i (w, v^v^x), then (/, vβ) = 0, (α =
1, •• ,|θ). Thus for this choice of / it follows from Theorem 4.3

that (5.1) has a solution. Suppose that g is a second generalized
Green's function for (5.2) and let d(x, t) = g(x, t) — #0(£, ί). Then there
are constants flf •••, ί r such that

Γ
Jα

i(x, t)f(t)dt = Σ w<(»)fί f

S b

d(x, 8)v,(8)d8, then
a

(5.11) Γ 0(x, ί)/(ί)dί = X «i(»)f4 .
Jα ΐ = l

Multiplying (5.11) by %*(#), and integrating with respect to x, we have

δ4(α?)<P(α?f t)f(t)dtdx = f4 , (i = 1, , r) ,
Jα Jα

and consequently

S δ Γ r Γδ __ T

α L »=1 Jα J

But w is an arbitrary integrable function, and hence

r Γb

Φ(x, t) — Σ ̂ (α?) I ^(s)(?(s, t)ds = 0 on D ,
i=l Jα

and

r Γb P Γb
J/ΛΛ JL\ V~ί Λ , /ΛΛ\ \ T7 ίn.\/fiίn. i \ / J Λ I V~̂  rr /jΛ \ Jin* ^ \ Λ . / Λ \ / J Λ

i=l Jα j=l Jα

^(s)(P(s, ί) ds.
S a

d(x, s)Vj(s)ds, (i — 1, , r; j = 1, , p), and clearly
α

these functions are essentially bounded and measurable.
We now show that a generalized Green's function g for (5.2) has

the property that the function h defined by h{x, t) = g{t, x) is a
generalized Green's function for the adjoint system (5.3). Preliminary
to this result we shall prove the following theorem.

THEOREM 5.5. Suppose that uu * ,ur form a basis for the
solutions of (5.2), vu •• ,yyP from a basis for the solutions of (5.3),
and Θ = {θly , θr}, Ω — {ωu , a)p} are sets of integrable functions
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with the property that the matrices [(ui9θj)], (ί,j = lf * , r ) , and
[(va,ωβ)], (a, β = 1, •• , p), are nonsingular. Then there exists a
unique generalized Green's function gL(, θ, Ω) for (5.2) satisfying
the conditions

[ gL{x, t; θ, Ω)ωa(t)dt = 0 , (a = 1, . . . , p) ,
(5.i2) :

0M9L(X, t; 9, Ω)dx = 0 , (i = 1, . . . , r) .
Ja

Without any loss of generality we can assume that [(uif Θ3)\ = Er

and [(va9 ωβ)] — Ep. Let gQ be the generalized Green's function for
(5.2) described in Theorem 5.2. We now determine functions ψu , ψr

and functions φu •• ,<^p such that the generalized Green's function
given by (5.10) satisfies conditions (5.12). Such a generalized Green's
function g will satisfy the conditions (5.12) if and only if the functions
ψu (i — 1, , r), and φa, (a = 1, , p), satisfy the equations

^i(«) + Γ Σ θί{s)φβ(s)vβ(x)ds + Γ ^(8)flfo(s, x)ds = 0 ,
Jα β = l Ja

9«(aj) + Σ % ( x ) l i 8 ) ω « ( δ ) ώ + ^o(^, s)ωα(s)ίίs = 0 ,
J a j=l J α

(α = 1, . . . , p ) .

A particular set of solutions for equations (5.13) is

S b

gQ{x, s)ωa(s)ds , (a = 1, -, p) ,
a

(5.14) tί(«) = Γ Γ Σ δi(t)9*<ί, s)ωβ(s)vβ(x)dsdt
Ja Ja β--=l

, χ)dt, (i = l, •••,*•).

Moreover, if ^ and φa, (i — 1, , r; a = 1, , p), is any collection
of solutions of (5.13), then after substituting the value of ψi(x) given
by the first equation into the second equation of (5.13) it can be
shown by straightforward computation that the value of

r p _

i = l cύ—1

is independent of the particular ψ{ and φa. Hence there is a unique
generalized Green's function for (5.2) satisfying (5.12).

The conditions of Theorem 5.5 are clearly satisfied by the sets
β. = ui9 (i = 1, , r), and ωa = va9 (a ~ 1, , p) in particular, for
linear homogeneous differential operators whose coefficients satisfy
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suitable differentiability conditions, the treatment of Greub and
Rheinboldt [4] is limited to this specification.

It is to be remarked that, in view of the definition of g0, if ψ{

and φat (i — 1, •••, r; a = 1, •••, p), is any collection of solutions of
(5.13), then φae%n, (a = 1, , p), and ψ{ e 3ΐm, (ί = 1, , r) .

Correspondingly, there exists a unique generalized Green's function
QLH , ] Ω,Θ) for the system (5.3) which satisfies the conditions

(5.15)
\ <oa(x)gL*(x, t; Ω, Θ)dx - 0 , (a = l, ,p)t
Ja

\" gLφ, t; Ω, Θ)θ{(t)dt = 0, (i = 1, ., r) .
Ja

For brevity, denote by bΩ and bΘ the functions defined on • by
the formulas

Σbo(x, t) = Σ ωjixjvjit) , bθ(x, ί) = X ^(a?)^*) .

THEOREM 5.6. / / gL( , ', &, Ω) is the unique generalized Green's
function satisfying (5.12), then the following conditions (5.16)~(5.20)
are satisfied:

(5.16) gi3>0>( , Θ, Ω), (j — 0, , m + n — 2), βίcΐsίs ami is continuous
on D w/WZe flr^+ -^^a;, ί; <9, Ω) and d/dx gim+n~1'ϋ\xi t; θ, Ω) exist on
the individual domains a ^ t < x, a < x < b and a g x < 6, x <t t^b;

(5.17) i f t e [ a , δ ] , ί/^βw ί f c β f u n c t i o n w h o s e v a l u e a t x Φ t i s
0<«+*-i,o>^ .̂ @̂  β) /^as a ri^feί a^d a left limit at t, denoted by

flr<»+»-i,o>(ί+> ί ; β > Q) and g^+n-hoy^-^ t . θ^ Ω^ respectively, a^ώ

flrίm+-1 0 > (r, ί; 0, fl) - flfi + - 1 ' ^ ^ , ί; 0, fl) = 1

(5.18) i / ί e [a, &], ίfeβw L[g£(, t; θ, Ω)] = &i3(, ί) o^ [a, ί) and (t, b];

(5.19) if te (a, 6), ί/^β^ ίA,e function whose value at x is gL{x, t\ Θ, Ω)
satisfies the boundary conditions which characterize the set &;

(5.20) Γ θtWgzix, t; θ, Ω)dx = 0 , (i - 1, , r; t e [a, 6]) .
Ja

Conditions (5.16)-(5.18) may be verified directly using the properties
of gQ and the remark following the proof of Theorem 5.5. Condition
(5.20) is merely one of the conditions in (5.12). If £& = 3ίw, then
(5.19) is trivially satisfied. Otherwise, let w be any integrable func-
tion, and define / by

P Cb

f(x) = w(x) — Σ ωβ(a;)(w, vβ) = w(α?) — \ δβ(^, t)w{t)dt .
a=i
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In view of the assumption that [(va,cθβ)] = Ep, it follows that (/, va) — 0,
(a — 1, , p), and therefore the function u defined by

n{x) = Γ gL(x, t; θ, Ω)f{t)dt
Jα

is a solution of (5.1). But it follows from (5.12) that

Γ gL(x, t, θ, Ω)f(t)dt = Γ gL{x, t; θ, Ω)w(t)dt .
Jα Jα

Therefore,

0 = Mΰia) + Nΰ(b)

= [ (MgL(a, t; θ, Ω) + NgL(b, t; θ, Ω))w{t)dt ,
Jα

from which (5.19) follows in view of the arbitrariness of the function w.

COROLLARY. // w G §ί0 and! y is defined by

S b

gL(x, t; Θ, Ω)w(t)dt ,
α

then

L[y] = w-\bbΩ(, t)w{t)dt ,
J α

It should be noted that the unique generalized Green's function
QLH , Ω, Θ) for (5.3) which satisfies (5.15) also satisfies conditions
analogous to (5.16)-(5.20).

THEOREM 5.7. If x,te [a, b], then gL*{x, t; Ω, Θ) = gz(t, x; Θ, Ω).

Let w and h be arbitrary integrable functions and define y and
z by

y(x) - Γ flrx(a?, t; @, Ω)w{t)dt ,
Jα

«(*) = Γ OiMx, t; Ω, θ)h{t)dt,
Ja

respectively. Then it follows from the corollary to Theorem 5.6 and
its analogue that ye 3ί, ze&*, and therefore

(L[y], z) - (y, L*[z]) - 0 .

But it also follows from the corollary to Theorem 5.6 that L[y] —
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S δ Γb

bQ{ , t)w(t)dt, L^[z] = h — I bΘ ( , t)h(t)dt, and therefore in view
α Jα

of (5.12), (5.15), and the definition of bΩ and bθ, we have
Γ Γ A(a?)[gz*(ί, »; Ω, 0) - 0z(x, ί; θ, Ω]w(t)dtdx = 0 ,
Jα Jα

from which the theorem follows since w and h are arbitrary integrable
functions.

COROLLARY I. The function gL{ , θ, Ω) is characterized by con-
ditions (5.16)^(5.20), and the function gL*( , θ, Ω) is characterized by
analogous conditions.

As a consequence of Theorems 5.4 and 5.7 one has the following-
result:

COROLLARY II. If g is a generalized Green's function for (5.2),
then the function h defined by h(x, t) = g(t, x) is a generalized
Green's function for (5.3).

6* A canonical form for boundary conditions Let [f{j] and
[Qii\f (i = 0, , m ^ 1; i = 0, , w ^ 1), be (m + 1) x (w + 1) inte-
grable matrix functions. Suppose that the matrix function [/^],
(i = 0, * ,m; j — 0, , ri), satisfies hypothesis (if), and gmj(x) =
gUx) Ξ 0, (i = 0, ., m; j = 0, . , n).

For a complex number λ let ptj( λ) be the function defined on

[α, 6] by

Pϋ(^; λ) = fi3{x) + λ^, (x) , (i = 0, . . , m; i = 0, . . . , n) .

It follows that for each number λ hypothesis (H) holds for the matrix
function [p{j( λ)]. For suitable y in 2I% let yx( λ), , ym( λ) be
defined on [α, 6] as follows:

(a?) - Σ AXa?)i/ϋ>(a?)
o

( i = m - 1, •••, 1) .

( 6 - 1 ) i/ yί+1( λ) e 8tlf then yfa λ) = Σ P«
.7=0

The class of functions y in %n for which &( , λ), , ym( λ) are a.c.
will be denoted by fίΛ(λ), and L[ λ] will be the operator with domain
3Ϊn(λ), and defined by

(6.2) L[τ/; λ] = Σ Po/( λ)τ/^ - »ί( λ) .
0



ADJOINT QUASI-DIFFERENTIAL OPERATORS OF EULER TYPE 231

The vector function (f/4( λ)), (i — 1, , m), will be represented by
y( λ), and y( X) will signify the (n + m)-vector function {y, •••,
^/u"1}, #i( λ ) , •> I7«( λ)). For a complex number y let p%( v) be the
function on [a, b] defined by

p$(x; v) = fi3{x) + vgi3-{x) , (i = 0, , m; j = 0, , n) .

For suitable z in 31 w define zx{ v), •••, zn( v) by

v) e Sίlf then z3{x; v) = ± pft(x; v)z^(x) - z'm{%; v)

The class of functions z in 2ίw for which zt( v), •••, zn( v) are a.c.

will be denoted by 3Iw(v) and L*[ v] will be operator with domain

2tΛ(v), and defined by

(6.4) L^[^; y] = X pU v)^(ί) - ?ί( v) .

The vector function (z3 ( v)), (j = 1, , w), will be represented by
z( y), and 2( v) will denote the vector function (z, ,« (w-1), 2Ί( , y), ,
ίsΛ( v)). Let A10, Ally A20, and A21 be k x n matrices, and let Bλ and
B2 be k x m matrices, (1 ^ ^ ^ 2m + 2w — 1), such that for each number
λ the & x 2(m + w) matrix

has rank Λ, where A^X) — A10 + λAn and A2(X) = A20 + λA21. Let

be the collection of functions y in 3ίw(λ) for which

(6.5) Λ(λ)^(α) - B ^ α ; λ) + Λ(λ)^(6) + B2y(b; λ) = 0 .

This section is concerned with the particular Euler type quasi-differen-
tial system

(6.6) L[y; λ] = 0 , ye

It follows from Theorem 3.2 that the system adjoint to (6.6) is

(6.7) L*[z;\] = 0 , ze^r*(%) ,

where ^ * ( λ ) c Sm(λ). The following assumption is made about ϋ^*(λ):

HYPOTHESIS (H^. T/^erβ exist (2m + 2n — k)xm matrices Az{v) =
A30 + vA31, A4(v) — Ai0 + vA41 and (2m + 2n — k) x n matrices B3, B±
such that for arbitrary X the set £&*(X) is the collection of function
z in 2ίw(λ) for which
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(6.8) A»(λ)s(α) - B,z(a; λ) + A4(X)z(b) + B4z(b; X) = 0 .

It shoud be noted that the assumption used by Zimmerberg to
obtain Theorem 2.1 of [13] does not imply that hypothesis (Hj) holds.
For if m = n = 1 and k = 2n, then let the matrices A10, An, Bu A20,
A2ί, B2 be defined as

AS = [01] , Bf = [21] ,

AS = [ 1 0 ] , AS = [ 0 1 ] , 5 * = [ 0 1 ] .

Then the hypothesis of Theorem 2.1 of [13] is satisfied, but hypothesis
(ί/i) does not hold.

If hypothesis (H^ holds then for each complex number v the
(2m + 2n — k) x 2(m + n) matrix

(6.9) [A^BsA^BJ

has rank 2m + 2n — k. Moreover, by a proof quite analogous to that
used by Reid to obtain (11.11') of [6] one may establish the following
result.

LEMMA 6.1. // hypothesis (HJ holds, then &(X) is the collection

of functions y in Sw(λ) for which there is a (2m + 2n — k)-vector e0

such that

ίa i m y{a) B?e0 , y(a; λ) = A3*(λ)β0 ,
(b.lU) _

y(b) = B*eQ , y(b; λ) = - A ί ( λ ) β 0 ,

and £&*(λ) is the collection of functions z in 2tw(λ) for which there
is a k-vector e1 such that

i(a) Bfe, , z(a; λ) - A*(λ)^ ,

i(b) = Bfe, , 2(6; λ) - -At{X)e ι ,

Af(v) = (A,(v))*, (i = 1, 2, 3, 4).

Now let K1Q = A10B8*
, iΓ20 = A Λ * + AiQB}, KΆ = M * + ΛA*, and

Then the next result follows from Lemma 6.1 and Lemma 3.1.

LEMMA 6.2. If hypothesis (H^ holds, then Kf(λ) = i£Ί(λ).

LEMMA 6.3. Suppose that hypothesis (H^ holds, the kx2m matrix
[B1B2] has rank k — p, and the (2m + 2n — k) x 2n matrix [Bz JS4]
has rank 2m + 2n — k — q. Then there exist p x n matrices ψu ψ2

and q x m matrices ψs, ψ± such that the p x 2n matrix
rank p, the q x 2m matrix [ψ3 ψ4] has rank q, and
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(6.12) ψάia) + ψ2y(b) = 0 , for ye

(6.13) ψ3z(a) + ψ£Q>) = ° > for ze

Suppose that R is a p x k matrix of rank p such that R[B1 B2] = 0,
and define ψ1 and ψ2 as ^ = iM1 0, ψ2 = RA20. In view of Lemma 6.2
and the fact that for arbitrary complex X the k x 2(m + n) matrix
[^(λ) B± A2(X) B2] has rank k it follows that there exists & p x p
matrix V such that

[RA^X) RA2(X)] = (EP + XV)R[A10A20] .

Hence Ev + XV is nonsingular and the equation (6.12) is equivalent to

+ RA2(X)y(b) - 0 .

If Ro is a g x (2m + 2w — k) matrix of rank q such that RO[BZ B4] = 0,
and τ/r3, i/r4 are defined as ψ3 — R0A30, ψ4 = R0A40, then equation (6.13)
may be verified in a similar fashion. The conclusion concerning the
ranks of [^i^2] and [ψzψA] is clear.

From Lemma 6.2 it then follows that [B± B2][ψ3 ψ4]* = 0 and
[B3 B4\[fx ψ2]* = 0, so that q ^2m - (k - p) and j> ^ 2^ - [2m + 2n—
k — q] = k+q — 2m, from which one has the following result.

LEMMA 6.4. If hypothesis (Hj) holds, then the columns o
form a basis for the null space of [B1B2] and the columns of
[ψιψϊ\* form a basis for the null space of [B3B4].

The following theorem gives a simultaneous canonical representation
of the boundary conditions for (6.6) and (6.7) in terms of parameter
matrices ψi9 Q{, Gi9 (i = 1, 2, 3, 4), and is the central result of this
section.

THEOREM 6.1. Suppose that hypothesis (H^ holds. Then there
exist m x n matrices ζ^ and Gi9 (i = 1, 2, 3, 4), such that y e
if and only if there exists a q-vector ηx such that

= 0 ,

(6.14) (Q, - XGM*) + (O2 - ^G2)y(b) + irfη, - y(a; X) = 0 ,

y(b; X) = 0 .

Moreover, ze£^*(X) if and only if there exists a p-vector η2 such
that

= 0 ,

(6.15) (Q* - λG*)z(α) + {Q* - xGt)z(b) + f*η2 - z(a; X) = 0 ,

(Q* - XG*)z(a) + (Q* - \Gϊ)z(b) + fϊr]2 + ?(6; λ) = 0 .
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Suppose that the matrices K1Q and Kn have ranks q0 and qu

respectively. Let D10 and Dn be (2m + 2n — k) x (2m + 2n — k — qQ)
and (2m + 2w — k) x (2m + 2^ — & — gx) matrices, respectively, whose
individual column vectors form orthonormal bases for the null spaces
of K1Q and K1U that is, K1QD10 = 0 and KnDn = 0. As K20 = K& and
K21 = JSζJ by Lemma 6.2, there exist matrices D2Q and A i of respective
orders k x (k — q0) and k x (k — qj whose individual column vectors
form orthonormal bases for the null spaces of K20 and K2L. Then

(6.16)
Di O J ' LAI 0

are nonsingular and have inverses of the form

Ao

0 D& 0

(6.17)
Ao

o
'flu Dn

D& 0 0

respectively. The matrices Hm Hίu H^, and H£ are generalized re-
ciprocals of the respective matrices K10, Kn, K20 = K£, and K2l — K£.
Let Qi and Giy (i = 1, 2, 3, 4), be defined as Qλ — A&H1(iA10, Q2 =

and G4 = -
Now if y e ϋ^(λ) then in view of Lemma 6.3 we need only verify

the last two equations of (6.14). Suppose that e0 is determined by
(6.10). Then it follows from (6.10) and the fact that the matrices
(6.17) are the inverses of the matrices (6.16) that

(6.18)
e0 = H10A10y(a)

e0 = HnAny(a)

H10A20y(b)

HnAny(b)

D10D?QeQ

Now it follows from (6.10) and (6.18) that

(6.19)

But

+ (Q2 - xG2)y(b)

- y(a; λ) = 0 f

(A*0D10D*

+ y(b; λ) = 0 .

*+ λA£AiI>S) + B2(A*D1QD*
= 0, and consequently the two equations of (6.19) may be

written in the form of the last two equations of (6.14) involving the
parameter vector Ύ]x.

On the other hand, suppose that ye^LjX) and (6.14) holds. Now
the first equation of (6.14) implies that there is a (2m + 2n — &)-vector
e0 such that y(a) = B$e0 and y(b) = 2?4*e0. Hence it follows from (6.16)
and (6.17) that (6.18) holds for this value of eQ. Solving the equations
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(6.18) for H10A10y(a) + H1QA20y(b) and HnAny(a) + HnA21y(b), multiplying

the first equation on the left by AfQ and A%, and the second equation
on the left by λA3* and λA4*, respectively, and adding it can be shown
that the last two equations of (6.14) may be written as

A*(e0 - AoAVo) + λA£(β0 - DnDZe0) + φift - y(a; λ) = 0 ,

A*(e0 - AoDfieo) + λA*(e0 - AiAW + ΨtVi + vφ; λ) = 0 .

In view of Lemma 6.2, the definition of the matrices D10, Dn, and the
choice of the vector e0, one sees after multiplying the first equation
of (6.20) by Bu the second equation by J52, and adding the two equa-
tions, that y satisfies the boundary conditions of (6.6). The conclusion
concerning Z)*(λ) may be established in a similar manner.

The next theorem is an application of Theorem 6.1, where it is to
be noticed that if m = n and [fi3'(x)], [9ij(%)] are Hermitian, then
5ΐ%(λ) = 3Ϊn(λ); in particular, if z e 3tΛ(λ), then z( λ) = z( λ).

THEOREM 6.2. Suppose that m — n, [fi3{%)] and [gij(x)] are
Hermitian on [α, 6], k ~ 2n, and £&*(X) = ^ ( λ ) . Then the system
(6.6) is equivalent to the Euler-Lagrange equations and transversality
conditions for minimizing the functional

yHa)[QMa) + QMb)] + y*Φ)[Q:y(a) + QόΦ)] + Γ Σ v{a%βy
{β),

J a a β—Q

subject to the restraints

ψMa) + ψόφ) = 0 ,

y*(a)[GMa) + G£(b)] + y*(b)[G?y(a) + Ga(b)] + Γ Σ Vw9^yw

J a cύ,β=Q

= const .

If m = n, the problem is restricted to the field of real numbers,
&i(α) = fij(x) = 0 for i Φ j , and if /„, gu e Kf, (i, i = 0, , ̂ ), then
the results of this section are the same as obtained by Zimmerberg
[12], provided that the formula (2.4) of that paper is corrected by
replacing fi9 fi+1, , fn_, by ft - Xgi9 fi+1 - Xgi+1, , / n _ x - Xgn-U

respectively. If, moreover, gu(x) = 0 for ΐ Ξ> 1, then these are the
same results as obtained by Reid [6, Section 11].

7 An application* In this section the results of Section 6 and
a theorem of Reid [7] will be used to show that the boundary condi-
tions for a rather large class of linear vth order differential operators
may be written in the form given by Theorem 6.1.

Reid [7] has considered yth order linear differential operators L of
the form
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(7.1) L[y] = ± q&yyv , v ^ l ,

with integrable coefficients. Functions Λ^y; p), (i — 0, 1, 2, •), were
defined as

Mv; v) = P(χ)v , My; v) Ξ (p(χ)y{r)Yr),

AUv; P) = ±[(p(χ)v{r-l)yr) + (p(χ)v{r)){r-1] , (r = l, 2, . . . ) ,
Δ

with the understanding that p e Sίr in the definition of A2r and Λ2r-i
The primary result of that paper, and the one of most interest here,
is Theorem 3.2, to the effect that if the polynomials 1, x, " ,xn/nl,
where n = v/2 or n — (y + l)/2 according as v is even or odd, belong
to the domain of the adjoint operator Tf, then there exist functions
πh (j = 0, •• ,y), with πoe3Io, ^α^eSlα, ττ2αeSία such that L[y] is
given by

(7.2) L[y] = 2 ^ ( y ; Try) ,

while 3IV is contained in the domain of the adjoint operator To* and

(7.3) T*{z) = L*[2] = Z Mz; (- lySi) /or ^ e Si, .

In view of the differentiability properties of πj9 (j = 1, , v), it
follows that (7.2) and (7.3) are of the form (6.2) and (6.4), respectively,
which in turn reduce to (2.2) and (2.4), respectively, provided that
m = n, gi3{%) = 0 when i ^ 1 or j ^ 1, and for i, j — 0, , n one
defines fid(x) as follows: fti(x) = (-l)4τr2<(a;); / ί W(aj) = ( - l ) ^ ^ ^ ^ ) ,
(ΐ = 1, . •., n); /ii+1(α?) = (-1)^(1/2)^^(0;), (i = 0, . . , n - 1); /,,(«?) = 0,
(j <i — 1 and i > i + 1).

In particular, if v = 2^ and 7Γ2%(x) ^ 0, then the vector #(x) con-
sists of y(x) and its first ^ — 1 derivatives. Similarly, z{x) consists
of z(x) and its first n — 1 derivatives. The coordinates y^x) of the
^-vector (̂α?) are defined by (2.1), and may be expressed in terms of
y(x) and its first 2n — j derivatives, (j = 1, , n — 1), and similarly
for the coordinates of z(x), defined by (2.3). Consequently, L[y] and
L^[z] are defined for y,ze 2ίv.

If v — 2n — 1, and πv(x) -φ 0, then L is an operator of odd order
and we modify the above defined matrix [/<,•(»)] in the following way:
delete the last row, replace fn-ln(x) with ( — l ) * " 1 ^ ^ ^ ) , and replace
fn-.ίn-i(x) with (-l)-1(7Γ2n-2(aj) + ( 1 / 2 ) ^ ^ ) ) . This change from an
(n + 1) X (n + 1) matrix [fij(x)] to the n x (n + 1) matrix [/£] changes
neither the value of L[y] nor the value of L*[z]. Now if τr2Λ_ieSln,
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then π\n_x e 2ίΛ_1 so that ys (x) may still be differentiated out and
written in terms of y and its first 2n — j derivatives, (j = 1, , n — 2),
and similarly z^x), (i = 1, , n — 1), may be written in terms of z(x)
and its first 2n — i derivatives. Consequently we still have that L
and L* have the common domain Stv.

If now it is assumed that there is an ε > 0 such that | qv{x) | ^ ε
almost everywhere, then it follows from Theorem 3.2, or Theorem 4.1
of [7], that the domain of the adjoint operator To* is §ίv. Moreover,
in view of the formulas which give the canonical variables ys(x) and
Zi(x) in terms of y{x), , y{n~1]{x) and z(x), , z{m~1](x), respectively,
we see that there exist nonsingular linear transformations T and ϊ\
which transform the vector functions (y, y', , y{u~1]) and (z, z', ,
z{v~1]) into the vector functions (y, y', , y{n"1]

9 yl9 , ym) and (z, z', ,
z{m-1], zlf •••, zn), respectively. Therefore, in view of Theorem 3.2 of
Reid [7] and Theorem 6.1, it follows that boundary conditions for a
vth order differential operator of the type described above which involve
linearly y and its first v — 1 derivatives at two points may be written
as (6.14), and the adjoint boundary conditions may be written as (6.15).
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