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A “‘branching law” is derived for the irreducible tensor
representations of the symplectic groups, and a relation is
given between this law and the representation theory of the
general linear groups.

Branching laws for the irreducible tensor representations of the
general linear and orthogonal groups are well-known. Furthermore,
these laws have a simple form [1]. In the case of the symplectic
groups, however, the branching law becomes more complicated and is
expressed in terms of a determinant. We derive this result here by
brute force applied to the Weyl character formulas, though it could
also have been obtained from a more sophisticated treatment of
representation theory contained in some unpublished work of Kostant.

The Branching law. Let V* be an n-dimensional vector space
over the complex field. The symplectic group in » dimensions, S,(n/2),
is the set of all linear transformations a € & (V™), under which a non-
degenerate skew-symmetric bilinear form on V* X V™ is invariant,
[3]. If <., -> is the bilinear form on V" X V* and ae &£ (V"), then

(1) aeS,(n/2) if and only if {ax, ay)> = {(x,y)> for all z,ye V".

It is well-known that S,(n/2) can be defined only for even dimensional
spaces, (n = 2y, ¢ an integer). It is always possible to choose a basis
ey, t =1 «-- @ in V" such that

(2) lei,ep={Cel,ep=01=i,J=p¢
e, e)p = 0 .
We assume that the matrix realization of S,(z) is given with respect

to such a basis [3]. The unitary symplectic group, US, (1), is defined
by

(3) USy(1) = Sp(1) N U2p)

where U(2y) is the group of unitary matrices in 2y dimensions. The
irreducible continuous representations of US,(z#) can be denoted by
Wy,...s,» Where f,, fu, -+, f. are integers such that fi=fi= -+ =
Jumz fuz 0.
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Let ac US,(¢). The eigenvalues of a are
€1y €y 00y sll.y el—ly 62—17 M) 5;1

where |¢,| =1, 1 <4 <y, (see [3]). The character of the representa-
tion *w; s, 1s given by

......

b gl gl2 —g=l2 ... gl _ g—ln l
4 EX f s, (@) = Le 2 ’ :
(4) AN () TS e

L=fi+p—1+1, 151

The vertical lines in the numerator and denominator of (4) denote two
determinants whose jth rows are obtained by replacing the symbol ¢
by e;.

Let *wy,,..., fu and “'o,,,..., Opt be irreducible representations of the
groups US,,(;:), US,(¢r — 1), respectively. Denote by R/u./* the
the multiplicity of *“w, ..., Gpes in the restricted representation “wy,....s, /
US,(¢# — 1) which is obtained by restricting “® to the subgroup of
US,(y¢) consisting of all matrices that leave the basis vectors e,, e,
fixed.

THEOREM 1. RJrje =0 unless fi=g;= five, 115 p— 2.
If these conditions are fulfilled, then

(5) Ry

fi—a.+1, fi—9.+2, fi—0g:+3,
A fl_gu~2+#_2’ .fl_gu—-l_‘_”"‘l? .fl+p
D, fi—9:+1, fi—0:+2,
b .fz—"gu—2+#_33 f.z—gM—1+#_2y f‘2+# -1

0 Dy, fo—gs+1,
cor fi—Guott—4, fi—9u 13, i+ p—2
0 0 D, . . .
=10 0 0

fy.-z—gp.-2+1, fp—z"—g,u.—l‘l'zy f;z.—-2+3
D}L-—Iy[L-—Z fp.—-l '—gpb—l + 1’ ffl.—l +2
0 0 0 -0 Doy fu+l

where D;yy; = max[fiy, —9;,0], 1=i=p— 1

Proof. The dependence of the character of the representation
s, on the eigenvalues ¢, -+-, ¢, of ac US,(¢#) can be explicitly

.....
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The restriction of *wy,
requiring that ¢, = 1.

..... fu to US,(t —1) can be accomplished by
It follows that

( 6 ) “Xfl ----- fﬂ,(eh ey &y 1)
= ZR;} yz;p.-l xgl _____ g#_l(ely cee, 5”'_1)
Gy 9y Gu1 »
We will calculate the constants Rji.J* by carrying out the decom-

position in equation (6).

character formula (4), we get

(T) Lspes (&1 +

*y Eu—iy 1)
gh —erh

gh — grh

.
151 !
Euig — Eut

A

gl — g7ha

elr — &7%

.
la —lg
Epo1 — €y

L

If we take the limit as ¢,— 1 in the

el — grtw

gl — grte

1 p—
- ®
8;:.—1 - e[l-—-l

&t — et

ey — et

b a—h
€1 &€uly

gt — grrtt

gl — gyptt

u—1 __ a—ptl
€u_1 Ly

e — &

& — &

Euy — Ealy

[ p—1 1
Set si(f) =(e) — ()7, 1=isp—1
d;i=¢+¢e'—2,1<i=sp—1.
It is easy to verify the formula
(8) si(n — d; = s;(n) — 2s8;(n — 1) + s;(n — 2).

Also, the relation
(9)

sin)=di[s(n—1)+2s;(n—2)+ -« +ks(n—k)+ - - - +(n—1)s,(1)]+ns,(1)
can be established by induction on (8).

Consider the determinant in the denominator of equation (7).
Using obvious abbreviations, we have

(10)
s(z0),s(pe—1),+ - -5(2),5(1) | =
‘U,#—l,"'z ’ 1
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s(p)—s(e—1),s(t—1)—s(p—2),- - -,5(2)—s(1),s(1)
1 , 1 yeee, 10,1
s(pt) —2s(pt—1)+s(t—2), s(pr—1) —2s(p—2) +s(p—3),
0 0 °* ',3(2)'—028(1)! S({.)

= |s(p) —2s(p—1) +s(pt—2), s(pt—1)—2s(pt—2) +s(—3), -+ +,5(2)—2s(1) |
= T di | s(u—1), 8(u—2), +++,5(2), (D) |

Equation (8) was used in the last step of (10). The quantity |-/’
stands for a determinant of order g — 1.

Now, consider the numerator of (7).
We have

(11)

s(ly), (s(L.), « - +,8(l,) | = (using (9))
ll ’ l2 y °° lu

dls—1)+ -+« +—DsM)]+1s@), -« - d[s(lu—1)+ - - - +(l.—1)s(1)]
+1,8(1)

ll y ° %y "

d{[s(l1—1)+ cee (L, —Ds()]— %-[s(l,‘—lﬂ— e +(l“—1)s(1)]}, cer

=1,

.. -,d{[s(zﬂ_1~—1)+ oot (la—1)s(1)]
— Lo ot~ 1)+ DI

Mo

Set qi(3) =si(l; — 1) + 285(; —2) ++--+( —Dsi(1), 1=i=p, 12
Jj =< p—1. Then, we find that the numerator of (7) is equal to
lus

Bog(en), <o (e = 1) = L=

lu: ®

12 L 1T dife@ — 2= q(e), o -

= T ddl. | a@), g@), -+, a( — 1|’

Q(ﬂ), Q(Z)y q(3)7 ) Q(# - 1) i,
lg(1), q(10), 43), -+, q(r — 1) |’
— lu—l [ (I(l), Q(Z)) ttt Q(ﬂ - 2)9 q(‘Lt) I,} .

Dividing the last expression in (12) by the last expression in (10), we
cancel the factor [[{5'd;,. Thus, to calculate Rj1:/* it only remains
to expand the determinants in (12) as linear combinations of de-

terminants of the form

_—

—1,
—1,

(13) | 8(h), (o), ++ =, 8(hus) ', by > =oe > hyy >0,
Set p;=¢;,+p—1i, 1<i=<p—1, Then Rir:/* wil be the

g
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coefficient of the determinant
| 8(0.), (p2), =+, $(Dus)
in the expansion of (12). It is straightforward to show that
(4 By, = 3sgno low — P low — P2+ * Llotumn = D) boto

where the sum is taken over all permutations ¢ of the integers
1,2, .-, n. The quantity

li—piif l; —p; =20
Lo— S —
Thus,
(16) Rﬁf q,u 1 I, — p1>, <l1 - p2> s <l1 - p,u.—-1>7 I,

<
<lz - p1>, <l2 - p2> A <l2 - pu—1>y l

<ZM - p1>1 <l,,, - p2> e <l;u. - pu.—1>: ly.

An analysis of expression (16) yields the theorem.

COROLLARY. R jr—1? = Rjvifua

Proof. Direct verification from expression (5).

It is well-known that the continuous irreducible representations of
the » X n unitary group U(n) can be denoted by "y, ..., where the
integers fi, fs, -+, f. can take on all values consistent with f, = f, =

«+ fa, [3]. We make the assumption that f, = 0.

U(n) contains a subgroup G(n — 2) = U(n — 2) + E, where E, is
the 2 X 2 unit matrix, which is obviously isomorphic to U(n — 2).
(see [1], page 16 for the notation). We identify G(n — 2) and U(n —
2) by this isomorphism. Thus the irreducible continuous representa-
tions of G(n — 2) Will be denoted by "*,,....,. .

Denote by My /= the multiplicity of "y, ...,  in the restricted
representation "vfl ..... fn/G(n — 2). The quantity Mf vifm can be
computed from the Weyl character formula for the 1rreducible re-
presentations of U(n) in the same way as we have done for the
irreducible representations of US,(z#). We give only the results of
this computation.

THEOREM 2. Let Mjr: gMuH be the multiplicity of *'y, mn
#H/U(y —1) as deﬁ'ned above.

..... Iyu—1

.....
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z‘ff;p"‘yfl.nsc — Rfly'.",fu,
g1t 9u—1 910 0y—1

s Ju—g > p—2:0

COROLLARY. M=+ = Riviofe
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