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This paper is a comment on the solution of an invariant
subspace problem by A. R. Bernstein and A. Robinson [2].
The theorem they prove can be stated as follows: if A is an
operator on a Hubert space H of dimension greater than 1,
and if p is a nonzero polynomial such that p(A) is compact,
then there exists a nontrivial subspace of H invariant under
A. ("Operator" means bounded linear transformation; "Hubert
space" means complete complex inner product space; "compact"
means completely continuous; "subspace" means closed linear
manifold; "nontrivial", for subspaces, means distinct from {0}
and from H.) The Bernstein-Robinson proof has two aspects:
it is an ingenious adaptation of the proof by N. Aronszajn
and K. T. Smith of the corresponding theorem for compact
operators [1], and it makes strong use of metamathematical
concepts such as nonstandard models of higher order predicate
languages. The purpose of this paper is to show that by appro-
priate small modifications the Bernstein-Robinson proof can be
converted (and shortened) into one that is expressible in the
standard framework of classical analysis.

A quick glance at the problem is sufficient to show that there is
no loss of generality in assuming the existence of a unit vector e such
that the vectors e, Ae, A2e, are linearly independent and have H
for their (closed linear) span. (This comment appears in both [1] and
[2].) The Gram-Schmidt orthogonalization process applied to the se-
quence {e, Ae, A2e, •} yields an orthonormal basis {eu e2i e3, •} with the
property that the span of {e, •••, An~ιe} is the same as the span of
{βi, * * ι en\ for each positive integer n. It follows that if amn = (Aen, em),
then amn = 0 unless m ^ n + 1; in other words, in the matrix of A
all entries more than one step below the main diagonal must vanish.
The matrix entries of the kth. power of A are given by αifi = (Aken, em).
A straightforward induction argument, based on matrix multiplication,
yields the result that αίίi = 0 unless m S n + fc, and

(k)
k

IT
— I 2

{With the usual understanding about an empty product having the value
1, the result is true for Jc — 0 also.) This result for powers has an
implication for polynomials. If the degree of p (the only polynomial
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needed) is k ( ^ 1), and if the matrix entries of p{A) are given by
α S = (p(A)en 9 em), then α ^ , n is a constant multiple (by the leading coeffi-
cient of p) of αίπίfc,*. Since || p(A)en || —> 0 as n —> co (because of the com-
pactness of p(A)), there exists an increasing sequence {k(n)} of positive
integers (in fact a sequence with no gaps of length greater than the
degree of p) such that the corresponding subdiagonal terms ak{n)+lfk{n) tend
to 0 as n tends to co. (This very useful conclusion is one of the analytic
tools used in [2], where it is described in terms of "infinite positive
integers".)

If Hn is the span of {eu •• •,«*{*)}> ^ e n {Hn} is an increasing se-
quence of finite-dimensional subspaces of H whose span is H. If Pn is the
projection with range Hnj then Pn —> 1 (the identity operator) strongly.
Since, for each n, the operator PnAPn leaves Hn invariant, it follows that,
for each n, there exists a chain of subspaces invariant under PnAPni

{0} = Hίo) c mι) c c mkM) = H% ,

with dim Hii] = i, i = 0,1, , fc(n). (The consideration of such
chains is essential in both [1] and [2].)

If {fn} and {gn} are sequences of vectors in if, it is convenient to
write fn ~ gn to mean that \\fn — gn \\ —• 0 as n—* co. Assertion: if
{/„} is a bounded sequence of vectors in H, then

( 1 ) APJn ~ PnAPnL .

(Intuitively: Hn is approximately invariant under A.) The proof is a
straightforward computation, based on the fact that Pnf = XJi** (/,
whenever feH. Since ΛP.Λ - P»APnfn = Σ * i ί (Λ, «i) ΣΓβfc( )
since the largest j here is fe(tι) and the smallest i is &(w) + 1, and
since aiS = 0 unless i ^ j + 1, it follows that || APJn - PnAPnfn \\ ^

II fn II * I Ctk(n)+l,k(n) |

The conclusion (1) can be generalized to higher exponents:

( 2 ) AkPnfn ~ (PnAPn)
kfn , fc = 1, 2, 3,

the proof is by induction on k and is omitted. For k — 0, (2) says
that \\Pnfn —/«||—>0, which is a stringent condition on the bounded
sequence {fn}; if that condition is satisfied, then (2) implies that

( 3 ) p(A)Pnfn ~ p(PnAPn)fn .

Return now to the unit vector e. Since Pne — e for each n, it
follows that p(PnAPn)e ~ p(A)e. Since p(A)e Φ 0 (because the vectors
e, Ae, A2e, are linearly independent), it follows that

ε = lim, |i p(PnAP,)e || = || p(A)e || > 0 .

Consider, for each n, the numbers
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! i p{PnAP«)e -

\\p(PnAPn)e -

•
\\p(PnAPn)e - V{PnAPn)Plk{n))e \\ ,

where P™ is the projection with range H^. Since Pi0) is the zero
projection, the first of these numbers tends to ε. Since, on the other
hand, P^{n)) = PnJ the last of these numbers is always 0. In view of
these facts it is possible to choose for each n (with possibly a finite
number of exceptions) a positive integer i(n), 1 S i(n) S k(n)y such
that

( 4 ) i j p(PnAPn)e -

and

< 5 ) i| p(PnAPn)e - p(PΛAPΛ)P«<*»e | | < -§-

the simplest way to do it is to let i(n) be the smallest positive integer
for which these inequalities are true. (The construction of this particu-
lar "infinite positive integer" i is the second major analytic insight
in [2].)

Since both {P^i{n)-l)} and {P{

n

i{n))} are bounded sequences of operators,
there exists an increasing sequence {%} of positive integers such that
both {Pί){n^""l)} and {P^V5} are weakly convergent. Write, for typo-
graphical convenience, Qj = P^V-1* and Qt — Pn

i{.ni)]. Let M~ be the
set of all those vectors f in H for which Qjf—*f (strongly), and,
similarly, let M+ be the set of those vectors / for which Q^f—^f
(strongly). The purpose of what follows is to prove that both ikf~
and M+ are subspaces of H, that both are invariant under A, and
that at least one of them is nontrivial.

Since linear combinations are continuous, it follows that M~ is a
linear manifold. To prove that M~ is closed, suppose that g is in the
closure of M~; it is to be proved that geM~, i.e., that Qjg—>g.
Given a positive number <5, find / in M~ so that | | / — g\\ < 8/3, and
then find j0 so that || Qjf - f\\ < 5/3 whenever j ^ j 0 . It follows that
if j^jo, then \\Qjg-g\\ £\\Qjg-Qjf\\ + || Q7/-/H + ll/-ffll< δ

This proves that M~~ is closed; the proof for M+ is the same.
To prove that M~ is invariant under A, suppose that / 6 ikf~, so

that Qjf—»f, and infer, first, that AQ]f-+Af, just because A is
bounded, and, second, that QjAQjf ~ QjAf, because Qj is uniformly
bounded. Then reason as follows : QjAf - QjAQjf = QjPnjAPnjQjf
{because Qj ^ Pnj) = PnjAPnjQjf (because the range of Qj is invariant
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under PnjAPnj) ~ APnjQjf (by (1)) - AQjf-+ Af. This proves that
M~ is invariant; the proof for MΛ is the same.

The next step is to prove that M~ Φ H; this is done by proving
that e does not belong to M~. For this purpose observe first that
the operators p(PnAPn) are uniformly bounded. (Observe that

\\(PuAPn)*\\£\\PuAP%\\*£\\A\\k

and use the polynomial whose coefficients are the absolute values of
the coefficients of p.) Now use (4):

•?r£\\p(PnjAPnj)\\.\\e-Qje\\ .

Since \\p(Pn APnj)\\ is bounded from above, its reciprocal is bounded
away from zero, and, consequently, \\e — Qje\\ is bounded away from
zero, which makes the convergence Q]e~+e impossible.

The corresponding step for M+ says that M+ Φ {0}; the proof is
quite different. The choice of the sequence {Uj} implies that the se-
quence {Qjβ} is weakly convergent; the compactness of p(A) implies,
therefore, that the sequence {p(A)Qje} is strongly convergent to, say,
/. The proof that follows consists of two parts:. (i) / Φ 0, (ii) fe M++
Part (i): p(A)Qje ~ p(PnjAPnj)Qle (by (3)), which is within ε/2 of
p(PnjAPnj)e (by (5)), whose norm tends to ε; it follows that || p(A)Q$e \\
cannot tend to 0, and hence that fΦO. Part (ii): Qjf ~ Qjp(A)Qje
(since Q/ is uniformly bounded) ~ Q$p(PnjAPnj)Qfe (by (3), and, again,
uniform boundedness) = p(PnjAPnj)Qje (because the range of Q$ is
invariant under p(PnjAPnj)) ~ p{A)QΛ

όe (by (3))—>/ (by definition).

If M+ Φ H, all is well; it remains to be proved that if M+ = H,
then M- Φ {0}. If M+ = if, then # ; / - > / for all /, and, a fortiori,
Qΐf-+f weakly. At the same time the sequence {Qj} is known to
be weakly convergent to, say, Q~~. The operators Qj and Q^ are
projections such that Qj g Qj and such that Qf — Qj has rank 1. It
follows that, for each j , there exists a unit vector /,- such that
(Qt ~ Qj)f — (/> fi)fi ί ° r all /• Observe now that Qje cannot tend
weakly to e, for, if it did, then it would tend strongly to e (an
elementary property of projections), and that was proved to be not so.
This implies that Q~e Φ e, or, equivalently, that (1 — Q~)e Φ 0. Can
the numbers |(e,/y)| be arbitrarily small? Since | ((Q/ — Qj)e, g) \ ^
I (β,/y) I I Iff II for all g, an affirmative answer would imply that
((1 -Q~)e, g) = 0 for all ff, so that (1 - Q~)e = 0—a contradiction. The
fact so obtained (that the numbers | (e, fj) \ are bounded away from
zero) makes it possible to prove that M~ Φ {0}; it turns out that if
ff ± (1 - Q~)e, then g e M~. Indeed, since (e, /,-)(/,-, ff) -> ((1 - Q~)e, g) =
0, it follows that {fh g) -> 0, and hence that (/, /,)(/,, g) -+ 0 for all
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/. This implies that ((1 — Q~)f, g) = 0 for all /, and hence that
(1 — Q~)g = 0. In other words, Qjg—>g weakly, and therefore strongly
(the same property of projections that was alluded to above); from
this it follows, finally, that g e M~.

I am grateful to Professor Robinson for a prepublication copy of
[2] and for a kind letter helping me over some metamathematical
difficulties.
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