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Let A be an associative algebra and A, the family of all
equivalence classes of irreducible representations of A of
dimension exactly n. Topologizing A, as in a paper about
to appear in the Transactions of the American Mathematical
Society, we show that for each 7, A gives rise to a fiber
bundle having fln as its base space and the n X n total
matrix algebra as its fiber,

Throughout this note A will be an arbitrary fixed associative
algebra over the complex field C. By a representation of A we
understand a homomorphism T of A into the algebra of all linear
endomorphisms of some complex linear space H(T), the space of T.
We write dim (T) for the dimension of H(T). Irreducibility and
equivalence of representations are understood in the purely algebraic
sense. If T is a representation, r- T will be the direct sum of r
copies of 7. Let A" the family of all equivalence classes of finite-
dimensional irreducible representations of A; and put

A™ = {Te A |dim(T) < n}, A, = {Te A" |dim (T) = n} .

We shall usually not distinguish between representations and the
equivalence classes to which they belong.

Let T be a finite-dimensional representation of A. If for each a
in A 7(a) is the matrix of T, with respect to some fixed ordered
basis of H(T), then 7:a—7(a) is a matrix representation of A
equivalent to T, '

By A* we mean the space of all complex linear functionals on A,
and by Ker (p) the kernel of @. If Te A, we put

(T) = {pe A?|Ker (T) < Ker (@)} .

An element @ of A* is associated with T if o€ @(T). One element
of @(T) is of course the character ¥* of T (x*(a) = Trace(T,) for a
in A). An element T of A is uniquely determined by the knowledge
of one nonzero functional in @(7T) ([2], Proposition 2).

As in [2] we equip A" with the functional topology as follows:
If TeA” and & c A", T belongs to the functional closure of &
if O(T)C (Uses@(S))~ where — denotes closure in the topology of
pointwise convergence on A.

Our main object in this note is to prove the following fact about
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the functional topology relativized to A\,L:

THEOREM 1. Fix a postitive integer n; and let T be any element
of A,. Then there exists a meighborhood U of T in A,, and a
Sfunction T assigning to each S in U a matrixz representation s of

A equivalent to S, such that for each a in A the matrix-valued
Junction

S —> 74a) (Se U)

18 continuous on U.

This asserts (see §4) that, for each n, A gives rise to a fiber bundle
with base space A, whose fiber is the » x n total matrix algebra.

2. Preliminary results. The following Proposition 1 coincides
with Proposition 7 of [2] (which was stated in [2] without proof).
Proposition 1 is not required for what follows it; but its proof is
related to later proofs.

PROPOSITION 1. Let n be a positive integer; and suppose that
{T%} is a met of elements of A™ converging to each of the p inequi-
valent elements V*:, <+, V? of A™, Then

(1) 3, dim (V) = .

Proof. Let m,=dim(V*), q= S2_,m! Each @(V*) has dimension
m?, and by the Extended Burnside Theorem ([1], Theorem 27.8) the
o(V®) (s=1,-.--,p) are linearly independent subspaces of A*. Thus
there are ¢ linearly independent functionals ¢,, - -+, @, each of which is
associated with some V*. By the definition of the functional topology
we can replace {T‘“} by a subnet, and choose for each »r =1, -+, ¢
and each ¢ a functional @i in @¢(T?), such that

(2) qJ:T@r(r:ly""Q)'
Since the ¢, «++, ¢, are independent, (2) implies that for some 7 the

@i, -+, @ are independent. Since dim (@(T")) < n*, it follows that
g = n’. This proves (1).

ReEmARK. If A is a Banach algebra we have shown elsewhere ([2],
Proposition 13) that a stronger inequality than (1) holds, namely

(3) gmmwsén.
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Probably (3) holds for arbitrary A, but we have not been able to
prove it.

COROLLARY 1. A, is Hausdorff for each n.

For each @ in A? let us define S¢ to be the natural representation
of A acting in A/J, where J is the left ideal of A consisting of those
a such that @(ba) = 0 for all b in A.

LEMMA 1. Let {p;} be a met of elements of A? converging
pointwise to an element @ of A*; and suppose the S° S¢ are all
fintte-dimensional. Then

(4) dim (S¥) < lim inf dim (S*) .

Further, if ¢ is a matrixz representation of A equivalent to S®, there
exists for each 1 a matrix representation o' of A equivalent to S¥
such that

(5) lim (6%(@)) 1 = (9(@)) s

for all @ in A and all j, k=1, .-, dim (S9).

Proof. Let m be the natural map of A onto A/J, where J =
{ac A|pba) =0 for all & in A}; and put m = dim(S¥). Every
element of (A/J)* is of the form

T(a) — p(ba)  (ac 4)

for some b in A. Hence there are elements a,, ++-, @,0b,, ---,b, of A
satisfying

(6) pb,a) = 0,(J, k=1,-+-,m).
Since @; — @, (6) implies that
(7) det {(:(0;a4))j k=1,...m} = 0,

and hence dim (S¥) = m, for all large 7. This proves (4).

Now the a,, b; could have been chosen to satisfy not only (6) but
also

(8) (0(2)) 5 = P(b,aay)

(xeA;7,k=1,---, m); assume this done. By (7), for each large ¢
there are unique complex numbers c¢i,(j7,k =1, -+, m) such that the
elements b = >, ¢ib, satisfy
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(9) pi(bjai) = 0 (J,k=1,+--,m).
By (6) and (9)
(10) lim ch = 0; .

In view of (4) and (9), there are elements a.,, -+, aj, bisy, =<+, bj,
of A (where p; = dim (S¥)), such that

(11) pi(biai) = 0,

for all large ¢ and all 7,k =1, ---, p;; (here we agree that a! = a;
for j=1,.--,m). Now, if j,k=1, .-+, p;, and x € A, define

(@ (@) = @i(bjxai) .

From (8), (10), and (11), we verify that ¢* is a matrix representation
equivalent to S% and that (5) holds. This completes the proof.

The following corollary was stated without proof as Proposition 8
of [2].

COROLLARY 2. For each positive integer n, the map T—y"(T e A,)
s @ homeomorphism of A, into A* (the latter having the topology of
pointwise convergence on A).

Proof. Obviously ¥y — T is continuous. To prove that T'— 7 is
continuous, we shall suppose that T, {T°} are elements of A, and that
®; ——;;—Yx” pointwise on A, where for each 7 ¢; is associated with T';

and we shall prove that x’i—?xf pointwise on A. Clearly this is

sufficient.

By [2], Proposition 1, S** = n-T and S% = ;- T%, where r; < .
By (4) r; = n for all large ©. Hence by (5) ¥"(a) = 1/n Trace (S%) =
lim; 1/n Trace (S¢) = lim; ¥"'(a) for all @ in A. So %™ — ¥7, and the
corollary is proved.

If M is any finite-dimensional complex linear space, the family
& of all linear subspaces of M of fixed dimension 7 (r < dim (M))
has a natural compact topology. Indeed, if G is the unitary group on
M (with respect to some fixed inner product), and G, is the subgroup
of G which leaves stable some fixed L in &, then & is in one-to-
one correspondence with G/G,, and the (compact) topology of & which
makes this correspondence a homeomorphism is independent of the
inner product and of L.

If » is any positive integer, M, will be the p x p total matrix
algebra over the complexes. Fix a positive integer n; and let .7 be
the family of all those subalgebras A of M . which contain 1 and are
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isomorphic with M,. For each A in & let A’ be the commuting
algebra of A in M ,:

A'={aeM_,|ab = ba for all b in A}.
It is well known that A’e & and that A” = A whenever Aec &7,

LEMMA 2. The map A— A’ is continuous on & to & (with
the topology discussed above).

Proof. If not, then, by the compactness of the space .2 of all
n*-dimensional subspaces of M, one can find a net {4} of elements
of &7 such that A;,— A, A'— B, where Ac <%, Be _#, A’ # B. Choose
an element b of B which is not in A’, and let a be any element of
A. Then for each 7 we can choose an a; in A; and b; in A} so that
a;—a,b;,—b. Since a;b; = b,a;, passing to the limit we obtain ab = ba,
whence be A’, a contradiction.

LEMMA 3. Let A be in &, and let e be a minimal monzero
idempotent in A. Then there is a neighborhood U of A in <2, and
a continuous function w on U to M , such that

(i) w(4) = e, and

(ii) for each B in U w(B) is a minimal nonzero idempotent
in B.

Proof. Choose an element a of A whose spectrum in A is
{1,2,.--,n}, and such that the spectral idempotent (in A) corre-
sponding to the eigenvalue 1 of a is precisely e; that is,

12) e=(n—D)'2—a)B3—a)--- (n—a).

Introducing a Hilbert space inner product into M , in an arbitrary
manner and projecting, we can construct a continuous function a on
& to M, such that «(A) =a and a(B)e B for each B in . Let
o(B) be the spectrum of «(B) (considered as an element either of B
or of M. Since a is continuous, ¢(B) is continuous as a function
of B. Thus there is a neighborhood U of A in ., and % continuous
complex functions \,, ---, \, on U such that

(i) 7\'7(‘4) =r (r=1, <o, M),

(ii) for each B in U the \(B), -+, \,(B) are all distinct, and

(i) o(B) = {\(B), +++, M(B)} for each B in U. Now, for B in
U, put

w(B) = I (w(B) = M(B)"(0(B)1 — a(B)) .

Clearly w is continuous on U, w(B) € B for each B in U, and w(4) = e.
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Since w(B) is the spectral idempotent corresponding to the eigenvalue
M(B) of a(B) (which has multiplicity 1), w(B) is a minimal idempotent
of B for each B in U.

LEmMMA 4. If Aec &, there is a meighborhood U of A in &,
and a continuous function w on U to M ,, such that, for each B in
U, w(B) is a minimal idempotent of the commuting algebra of B.

Proof. This follows immediately from Lemmas 2 and 3.

3. Proof of Theorem 1. We have seen ([2], Proposition 1) that
S¥ = n.T. Thus, putting m = n*, we may choose elements a,, -+, a,,
b, +++,b, of A as in the proof of Lemma 1 so that

xr(biak) = 3.7'1:(.7.! k = 19' Tty m) .

Since S — ¥ is continuous on A, (Corollary 2), there is a neighbor-
hood U’ of T in A, such that det x5(b;a));,, # 0 for S in U’. Thus,
as in the proof of Lemma 1, for each S in U’ we find unique complex
numbers ¢;,(S) such that the elements b,(S) = S, ¢;.(S)b, satisfy

(13) 15(05(S)ar) = 9
(7,k=1,---,m;Se U’). We now set
(05(®) 5 = x°(0;(S)xay)

(J,k=1,---,m;Se U’; xc A), and verify as in the proof of Lemma 1
that, for S in U’, os is a matrix representation of A equivalent to
n-S. Since S— x° is continuous (Corollary 2), the ¢;(S) are continu-
ous in S on U’, and so

(14) S —— os(x) is continuous on U’

for each x in A.

Since oy = n-S, Burnside’s Theorem asserts that the range gs(4)
of o5 belongs to .&°. Further, it follows from (14) that S — o4(4) is
continuous on U’ (in the topology of n’-dimensional subspaces discussed
in §2). Thus, by Lemma 4, there is a neighborhood U” of T contained
in U’, and a function w on U"” to M, such that, for each S in U”, w(S)
is a minimal idempotent of the commuting algebra of ogg(4).

We now consider M,, is acting on C™ (the space of complex m-
tuples). Let »,,---,v, be a basis of C™ such that »,---,v, is a basis
of range (w(T)). By the continuity of w there will be a neighborhood
U of T contained in U” such that

(15) w(S)vy, +++, W(S)Vp, Vusry ***y U
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is a basis of C™ for each S in U (the first n vectors of (15) being, of
course, a basis of range (w(S))). Now for each S in U and = in A
let o) be the matrix of os(x) with respect to the ordered basis
(15), and let 74(x) be the » X m matrix consisting of the first n rows
and columns of pEg(x). Since w(S) is a minimal idempotent of the
commuting algebra of gs(A), s restricted to range (w(S)) is an irre-
ducible subrepresentation of os and so is equivalent to S. Thus, for
each S in U, 7y is a matrix representation of A equivalent to S.
Further, since S — w(S) is continuous on U, the basis (15) varies
continuously with S on U; and therefore by (14) we conclude that
S—7s(x) is continuous on U for each x in A. This completes the proof
of Theorem 1.

4. TFiber bundles associated with A. Fix a positive integer n,
and let G, be the group of all algebraic automorphisms of the total
matrix algebra M,. We are going to describe to within equivalence
a fiber bundle B, with base space A, fiber M,, and group G,. To do
so, it is sufficient to specify an open covering of fi,,, and to define on
the overlap of any two sets in the covering the G,-valued “coordinate
transformation functions” ([3], 8§82, 3). As our open covering we take
the set of all the U= U, (T e A4,) of Theorem 1. If T, T'e A,, the
coordinate transformation funection I’z on U, N U, will assign to
each S in U, N U,. the following automorphism of M,:

Irr(S): (@) — " (@) (@acd).

(Here ™ is the 7 of Theorem 1). The property I'rr» = I'ryp0lr p
(on Uy N Uy N Uyp.) obviously holds; and the continuity of the maps
S—7tP(a) and S— 7" (a) assures us that I';, is continuous. Thus
we have defined a fiber bundle of the required kind; its equivalence
class clearly depends only on A.

Thus, if the algebra A4 has a large supply of finite-dimensional
irreducible representations, the structure of the fiber bundles B,(n =
1,2, --.) constitutes a significant feature of the structure of A. We
hope in a later paper to discuss the structure of these bundles for
certain special kinds of algebras associated with locally compact groups
having “large” compact subgroups.

BIBLIOGRAPHY

1. C. W. Curtis and I. Reiner, Representation Theory of Finite Groups and Associa-
tive Algebras, Interscience Publishers, 1962.

2. J. M. G. Fell, The dual spaces of Banach algebras, Trans. Amer. Math. Soc.
114 (1965), 227-250.

3. Norman Steenrod, The Topology of Fibre Bundles, Princeton University Press,
1951.






PACIFIC JOURNAL OF MATHEMATICS

EDITORS
H. SAMELSON *J. DUGUNDJI
Stanford University University of Southern California
Stanford, California Los Angeles, California 90007
R. M. BLUMENTHAL RICHARD ARENS
University of Washington University of California
Seattle, Washington 98105 Los Angeles, California 90024

ASSOCIATE EDITORS

E. F. BECKENBACH B. H. NEUMANN ‘'F. WoLF K. Yosmpa

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA STANFORD UNIVERSITY

CALIFORNIA INSTITUTE OF TECHNOLOGY UNIVERSITY OF TOKYO

UNIVERSITY OF CALIFORNIA UNIVERSITY OF UTAH

MONTANA STATE UNIVERSITY WASHINGTON STATE UNIVERSITY
UNIVERSITY OF NEVADA UNIVERSITY OF WASHINGTON

NEW MEXICO STATE UNIVERSITY * * *

OREGON STATE UNIVERSITY AMERICAN MATHEMATICAL SOCIETY
UNIVERSITY OF OREGON CHEVRON RESEARCH CORPORATION
OSAKA UNIVERSITY TRW SYSTEMS

UNIVERSITY OF SOUTHERN CALIFORNIA NAVAL ORDNANCE TEST STATION

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be
typewritten (double spaced). The first paragraph or two must be capable of being used separately
as a synopsis of the entire paper. It should not contain references to the bibliography. Manu-
scripts may be sent to any one of the four editors. All other communications to the editors should
be addressed to the managing editor, Richard Arens at the University of California, Los Angeles,
California 90024.

50 reprints per author of each article are furnished free of charge; additional copies may be
obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published monthly. Effective with Volume 16 the price
per volume (3 numbers) is $8.00; single issues, $ 3.00. Special price for current issues to individual
faculty members of supporting institutions and to individual members of the American Mathematical
Society: $4.00 per volume; single issues $1.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal
of Mathematics, 103 Highland Boulevard, Berkeley 8, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 6,
2-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION
The Supporting Institutions listed above contribute to the cost of publication of this Journal,
but they are not owners or publishers and have no responsibility for its content or policies.

* Paul A. White, Acting Editor until J. Dugundji returns.



Pacific Journal of Mathematics

Vol. 16, No. 3 BadMonth, 1966

Gert Einar Torsten Almkvist, Stability of linear differential equations with

periodic coefficients in Hilbert space .....................cccuviu... 383
Richard Allen Askey and Stephen Wainger, A transplantation theorem for

ultraspherical coefficients . ...............o i, 393
Joseph Barback, Two notes on regressive isols ........................... 407
Allen Richard Bernstein and Abraham Robinson, Solution of an invariant

subspace problem of K. T. Smith and P. R. Halmos .. ................. 421
P. R. Halmos, Invariant subspaces of polynomially compact operators . . ... 433
Leon Bernstein, New infinite classes of periodic Jacobi-Perron

algorithms . ... .. 439
Richard Anthony Brualdi, Permanent of the direct product of matrices . . ... 471
W. Wistar (William) Comfort and Kenneth Allen Ross, Pseudocompactness

and uniform continuity in topological groups . ....................... 483
James Michael Gardner Fell, Algebras and fiber bundles . ................. 497
Alessandro Figa-Talamanca and Daniel Rider, A theorem of Littlewood and

lacunary series for compact gQroups ............c.ooueeeeeenniininnn.. 505
David London, Two inequalities in nonnegative symmetric matrices. .. ..... 515
Norman Jay Pullman, Infinite products of substochastic matrices . ......... 537

James McLean Sloss, Reflection and approximation by interpolation along
the boundary for analytic functions ................
Carl Weinbaum, Visualizing the word problem, with an ap,
GEOUDS .o oot et e e e




	
	
	

