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Let G be a compact group and feL2(G). We prove that
given p < co there exists a unitary transformation U of L\G)
into L\G), which commutes with left translations and such
that UfeLp. The proof is based on techniques developed by
S. Helgason for a similar question. The result stated above,
which is an extension of a theorem of Littlewood for the unit
circle is then applied to the study of lacunary Fourier series.

The following two results concerning Fourier series of functions
defined on the unit circle were proved by Littlewood [5]:

I. Suppose that for any choice of complex numbers ocn, with
I ocn I = 1, 2, anane

inz is the Fourier series of an integrable function
(or a Fourier-Stieltjes series) then 2 I an Γ" < °°.

II. Let Σι\an\2 < c o Then given p < ©o there exist complex
members an9 with \cxn\ = 1, such that 2 anane

inz is the Fourier series
of a function in ZΛ

Helgason [3] has generalized I to Fourier series on compact groups.
Let G be a compact group with normalized Haar measure dx0 If
feLι(G) then / is uniquely represented by a Fourier series

f(x)~ΣdyTr(AyDy(x))
γer

where Tr denotes the usual trace, Γ is the set of equivalence classes
of irreducible unitary representations of G, Dy is a representative of
the class T, dy is the degree of 7, and Ay is the linear transformation
given by

Ay = ί f(x)Dy(x~1)dx .

Helgason has proved

Γ. Suppose that, for any choice of unitary transformations Uy

on the Hilbert space of dimension dy, ΣΎ€ΓdyTr(UyAyDy(x)) is the
Fourier series of an integrable function (or a Fourier-Stieltjes series)
then
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yer

In view of the Schur-Peter-Weyl formula

yer

Helgason's result is an extension of I.
In this paper, using Helgason's techniques, we propose to extend

II to compact groups in the same sense. That is we prove

IΓ. Let ΣdyTr(AyAy) < oo. Given p < co there exist unitary
transformations Uy such that ^ dyTr(UyAyDy(x)) is the Fourier series
of a function in ZΛ

This is accomplished as in [3] by proving and exploiting the
4' lacunarity" of a certain subset of the space of irreducible unitary
representations of the product group ILes U(d^ where U(d^ is the
group of unitary transformations of the Hubert space of dimension di
and S is an arbitrary index set. In the last section we discuss in general
lacunary properties of subsets of the space of irreducible representations
of a compact group.

2 The main result* For a positive integer n let U(n) be the
group of unitary transformations of the Hubert space of dimension n.
The normalized Haar measure on U(n) will be denote by dV.

LEMMA 1. Let A be an n x n matrix. Then for s = 1, 2, 3,

(1) \ I Tr(AV) \2sdV S %& [Tr(AA*)]°
J u(n) ns

where B(s) is a constant depending only on s.

Proof. Since d V is left and right invariant it is sufficient to prove
the lemma when A is diagonal. Letting ex, e2y , en be a basis for
the Hubert space on which A and V act and a{ = ζAeiy ei), v{ = ζVeiy e;>
we have

( 2 ) ( I Tr(AV) I W = Σ *&&&< *<„_#„
J ί/(ίl)

where the sum extends over all iu i2, , i2s such that 1 g i, g n.
Each integral in the sum is of the form
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( 3 ) \ v{^
J Uin)

Now each such integral is zero unless j \ = klf - *-,jn = kn. For let W
be a diagonal unitary matrix with elements a{ of modulus one on the
main diagonal. Then by the invariance of dV, (3) becomes

U(n) i=l

= ( Π < WVeit e<yKet, WVety*d V

= Π at*-* \ Π < Veit ety«fiu Ve<y*d V .

Thus if the integral is not zero, Π?=i #<*"** = 1, for all choices of the
aim Clearly this is possible only if j \ = ku , j n = &Λ. Thus the sum
(2) is equal to

( 4 ) Σ I ah |2 o<21
2 . I ais | ! j ^ | vh |2 | vu \*dV .

We shall see that for each integer s

where B(s) depends only on s. It then follows from Holder's inequality
that the integrals in (4) are bounded by B(s)/n* so that (4) is majorized
by

ψ- Σ I ah I* I ais I2 = ϋ i 2 ! [Tr(AA*)]° ,
TV 71

and the lemma will be proved.
It is sufficient to calculate (5) for i = 1. Let Uι(n — 1) be the

subgroup {Te U(n): Tex = e j . The space ϋ{n)/Uι(n — 1) of left cosets
{ F = Fί/Ί(^ — 1): Ve U(n)} can be identified with the unit sphere Σn

in a complex w-dimensional Hubert space. Since vx is constant on these
cosets

vι\
udV=\ \(Veueιy\**dV =

where d F is the unique normalized measure on Σn invariant with
respect to U(n) and

Vβί = w ^ + + wnen .

If we identify Σn with the real (2n — 1) dimensional sphere S271"1

in real 2^-dimensional space and dV with dw, the normalized invariant
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measure on S2"-1, then

( 6 ) \ \Vί\
28dV=[, m (xl + xiydw.

JU(n) JxJ+ + *2Λ

a=l

By Minkowski's inequality and the invariance of dw (6) is bounded by

28

where Ω(Sm) = is the Euclidean surface area of the real

Γ(m + 1\
I\~2~)

m-dimensional unit sphere. Thus the integral in (6) is bounded by

B(s)

which proves (5).

COROLLARY 2. Let J be the canonical representation U~*U of
U(n) and J8 t be the tensor product of J, s times and J, the conjugate
representation, t times. J8 t decomposes into at most B(s + t) irre-
ducible components. IfsΦt then none of the components is the
identity representation.

Proof. If χτ is the character of the representation T, then
XJSft(V) = (XAV)y(xAV)y = (Tr(V)y(Tr(V)y. Thus by the lemma

\χs

which proves the first statement.
The number of times the identity representation occurs in J8tt is

(Tr{ V)Y(Tτ(V)Yd V = 0
)

if s Φ t by the statement following (3).

LEMMA 3. Let G = ΐlies U(di) be a product of unitary groups
U(di). Let F(V) be a function on G of the form

ies

where A{ is a d{ x d{ matrix and 1^ is the projection of V on U(di).
Then
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j β I F{V) f'dV ^ 5(β)(j I F(V) fdv)'

where dV is the normalized Haar measure on G.

Proof. It suffices to prove the lemma when

Then

(7) ( \F(V)f°dV
JG

where the sum extends over all iu , i2a such that 1 ^ iά? ί* N. By
the corollary the only terms in the sum which do not vanish are those
of the form

(8) ( d*h\ Tr(Ah Vh) I2 d|s I Tr(Au Vh) |2d V.

By Holder's inequality (8) is majorized by

which by Lemma 1 is majorized by

^At) . . . Tr(AisAΌ

Hence the left side of (7) is bounded by

where the equality follows from the Peter-Weyl formula.
Now let G be an arbitrary compact group and Γ be the set of

equivalence classes of irreducible representations of (?• Let dy be the
degree of the class 7. Then G — Iϊγer U(dy) is a compact group which
can be thought of as the group of unitary transformations of L2(G) into
U(G) which commute with left translations. That is, if V is such a
transformation then V corresponds to the element {Vy}eG such that

Vf(x) ~ Zdy
Y6/1

whenever f(x) ~ ^asr Tr(AyDy(x)) e L\G).
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THEOREM 4. Let feU(G) and p< oo, then for almost every
VeG, VfeLp(G).

Proof. Let Vf(x) = / !(V» = Σ dyTr(VyAyDy(x)). Then f(V, x)
can be considered as a function on G x G. For fixed # € G we have
by Lemma 2 that

, x) f'dV ^ B(s) [\G\f(V, x) \!dV J = 5(s)[Σ dΎTr(AΎA*) | '

so that

= ί ( \f(V,x)\»dVdx

Therefore if fe L2(G), then for almost every VeG, [ \ Vf(x) \28dx <

Letting s > p/2 we obtain the theorem.
We remark for later use that for some V

Indeed the set of V for which

\udx :

cannot be of measure one.
We will also use the following

REMARK 5. Let fe C(G) be a continuous function such that for
all self adjoint VeG, VfeC(G)9 then f(x) - ΣdyTr(AyDy(x)) with
*ΣidyTr(\Ay\) < co (I Ay I is the absolute value of the matrix Ay). In-
deed letting f(x) = /(F 1 ) we can write / = (/ + /)/2 + i (/ - /)/2ί =
Λ + i/2. H / 4 ( α ; ) - Σ ^ ^ ( A y , A ( » ) ) (i = 1, 2) then A7*fί = AΎ><.
Therefore there exists a self adjoint V — {Vy} e G such that Ay> {Vy =
Ayfi|. Thus ΣidyTr(\Ay,i\DΎ(x)) is continuous so that applying a

method of summation as in [4, 8.3] we obtain that the partial sums of
Σ dyΓr(| Ay, < I) = Σ dyTr(\ Ay, t \ Dy(e)) are bounded. Thus Σ dyTr(\ Ay \) ^
ΣdyTr(\Ayfl\) + Σ>d,Tr{\Ay>2\) < oo.

We shall call a series Σ ώγΓr(AyZ)γ(α;)) satisfying Σ dyTr(\ Ay \) < oo
an absolutely convergent series. The space of such functions will be
denoted by A(G). It is easy to see that A(G) consists of functions of
the type f*g with f9ge L\G). The space A(G) = U(G)*U{G) has been
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studied in [1],

3* Lacunary Fourier series* Given a compact group G we shall
say that a subset Eg=Γ of the set of irreducible unitary representation
of G is a Sidon set if it satisfies the following property:

A. ΣdyTr(\ Ay I) < co whenever J^yec dyTr(AyDy(x)) is the Fourier
series of a continuous function (cf. [6, 5.7]).

A set EaΓ will be called a set of type A(p) (or EeA(p)) for
p > 1 if it satisfies

B. If ΣyβE dyTr{AyDy(x)) is the Fourier series of an integrable
function then it is the Fourier series of a function in Lp (cf, [8]).

If B is a space of functions on G and E £ Γ we will denote by
BE those functions in B with a series of the form Σy€E dyTr(AyDy(x)).
It is seen as in [8, 1.4] that EeA(p) if, for some r < p, Lr

E — L\.
Clearly A(pλ) £ A(p2) if Pι ^ p..

If G — Hies U(di) then S can be thought of as the set of irreducible
representations of G consisting of the projections of G onto the Uidi).
Lemma 2 shows that S e A(p) for every p < co. It is a simple matter
to prove that S is also a Sidon set. Indeed, if f(V) = Y, ^ T V ^ F J

tes
is a continuous function belonging to CS(G) and if U ~ {Ui} e G then

Uf(V) = ΣdiTriAiUtVi) = left translation of / by U,
ies

is also continuous. It suffices to pick the U{ so that A{ Ut — | A{ |
to obtain that ΣnesdiTr(\Ai\) < co.

We shall now establish a characterization of sets of type A(p) which
will imply that every Sidon set is a A(p) set for every p < co. For a
group G denote by &v— &P(G) the algebra of operators on LP(G)
generated in the weak operator topology by the operators {Ry: y e G}
where Ryf(x) = f(xy). We shall use the fact [2, Th. 6] that &p is
(isometric and isomorphic to) the dual space of a Banach space Ap of
continuous functions on G. A2 — A(G) the space of functions with ab-
solutely convergent Fourier series [1].

The isomorphism between £?p and the dual space of Ap is given
by T—+φτ where φτ{f) — Tf(e). This correspondence is well defined
because every T e &p maps each element of Ap into a continuous
function, indeed an element of Ap. We also have that &p consists
exactly of those bounded operators on Lp which commute with left
translations.

Now if Γ e ^ p , p > 2, then T e ^ 2 a n d || T\\&9 ^ ikf || T\\.? where
P

M is a constant depending only on p. For if feLr then by Theorem
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3 there exists a unitary transformation U commuting with right trans-
lations (and therefore with elements of &p) such that UfeLp. We
can also choose U such that \\Uf\\p^2B(s)\\f\\2 where B(s) is the
constant appearing in Lemma 1 and s > p/2 (cf. the remarks following
the proof of Theorem 4).

We then have that TUfe V and U*TUf = TU* Uf = Tfe L\ Also
|| Tf\\2 = II CT Γl7/|| t S II Γff/||f £ || ΓCT/||, ^ || T\\Λψ \\ Uf\\, rg \\ T\\*p

M\\f\\2 where M = 2B(s). Therefore \\T\\M.2S M\\T\\&p. This im-

plies that A2 S Ap and || \\AP g Λf || | | 4 2. It is now a simple matter to
prove:

THEOREM 6. Let E £ Γ be a set of irreducible unitary represen-
tations of G and p > 2. The following are equivalent:
( a) E is a set of type A(p).
(b) If T € j$H ίftere e mte S e ^ such that Tf = S/ /or αM / e L£.
( c) If fe Al then fe A2 = A(G).
(d) Every closed subspace of UE which is invariant under left

translations is the range of a projection P belonging to &p which
is self-adjoint in the sense that Py = P* for each 7 e Γ.

Proof. Let EeA(p). Then LP

E = L% so that by the open
mapping theorem there exists B such that | | / | | p ^ B | | / | | 2 for feLE.
As L | is invariant under right and left translations there exists a
projection PE of U onto LE which commutes with right and left
translations/ If Γ G ^ 2 let S = TPE, then \\Sf\\P ^ || T\\ \\PEf\\P S
| | Γ | | J 5 | | P Λ / | | 2 ^ - B | | Γ | | | | / | | p . Thus Se^p and (a) implies (b).

Now assume (b) holds. If feLE then by Theorem 3 there exists
Ue^2 such that UfeLp; clearly UfeLp

E. Let Seέ?p be such that
Sg = C7*0 for all £ e LE; then SUf=U*Uf = fe L\ Hence 14 - ϋ
so that (b) implies (a).

We now show that (a) and (b) imply (d). Indeed if (a) holds the
projection PE of U onto LE is bounded in U. Suppose the Y £ LE is
invariant under left translations, let Pγ be the projection (belonging
to ^2) of U onto the left invariant subspace of L2 generated by Y.
By (b) there exists Se£Pp with S = Pγ on Lj. Then P £S = P F so
that Pγ e &p.

Suppose (d) holds and let U be a unitary self adjoint element of
^?2. Then Z72 = I so that P = (17 + J)/2 is a projection which commutes
with left translations. Let Y be the subspace of LE generated by
PL% Π 14. Then Y is invariant under left translations so that by (d)
there is a self-adjoint projection of U onto Y commuting with left
translations. Clearly this projection is PPE so that PPE e &p. Hence
UPE = (2P - I)PE e &P. Therefore UPEf is continuous for every fe A\
In particular if f(x) ~ ΣyeEdyTr(AyDΎ(x))e AE then UPEf = Uf is
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continuous. Therefore by Remark 4, AP

E <5 A(G).
Finally since A g Ap with \\f\\ΛPSM\\f\\Λ, (c) implies that AE = Av

Ey

so that, by the closed graph theorem, \\f\\Λ ^ B \\f\\AP for each/€ Ap

β.
Each Γ e ^ 2 defines therefore a continuous linear functional on AE by
Tf(e). The Hahn-Banach extension of this functional determines, in
view of the duality between Ap and ^ , an element S e ^ , such that
Sf(x) = (SLJ")(e) - (TLJ)(e) = Γ/(z) for / e 4£; therefore S - Γ on
LJ. Thus (c) implies (b) and the theorem is proved.

REMARK 7. It suffices for condition (d) to be true that every
closed left invariant subspace of LE is the range of a projection. In-
deed the argument used in [7, Th. 1] will show that such a projection
can be chosen to be left invariant (and therefore belonging to

THEOREM 8. E S Γ is a Sidon set if and only if for each
there exists a finite measure μ on G such that Tf = f*μ for each
feLE.

Proof. One applies the same duality argument used in the proof
of Theorem 6 (cf. also [6, 5.7.3]. Assume first that E is a Sidon set.
Then given Te&2, define a linear functional F on CE by F(f) —
Tf(e). Then F is well defined, since fe CE=>fe A; by the closed graph
theorem F is continuous and has a Hahn-Banach extension to all of,
C(G). That is, by the Riesz representation theorem there exists a bounded
measure μ satisfying

F(f) = ( f{x~ι)dμ(x) for all feCE.
JO

Since T commutes with left translations Tf=f*μ for all feCE.
Conversely let E satisfy the hypothesis of the theorem, to prove that
E is a Sidon set, let fe CE and let T be an unitary element of ^ 2 .
By hypothesis there exists a measure μ such that Tf — /* μ. Hence
Tf 6 C(G) and by Remark 5, fe A.

COROLLARY 9. Every Sidon set is a A(p) set for every p.

Proof. If μ is a bounded measure and ϋJμ/ = f*μ, then i 2 μ € ^ p

for every p. Therefore, by Theorem 8 if E is a Sidon set condition
(b) of Theorem 6 holds.

REMARK 10. In [4, 9.2] a sufficient condition for a set E S Γ to
be a Sidon set is given. This condition includes the requirements that
the degrees of the representations of E be bounded. The fact that for
Hies Uidi), S is a Sidon set shows that this requirement is not necessary.
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