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Let there be given a function f(2) analytic in an open
connected set, not necessarily simply connected, which is
bounded by simple closed analytic curves such that the
function is continuous on the closure of the region and such
that the real part of the function satisfies boundary conditions
that are analytic in a neighborhood of the boundary. We
want to interpolate f(z) along the b\oundaries and find con-
ditions that make the interpolants converge maximally to f(z)
throughout the closure of the region, The boundary condition
on the real part of f(z) permits the analytic continuation of
f(@) across the boundary curves and ensures that we are
interpolating at points interior to the region of analyticity.
In our error estimates (Theorem 1) maximal convergence
depends in an essential way on how far we can reflect f(2)
and this in turn depends on the boundary values of the real
part of f(2) as well as on the geometry of the given region
and its analytic boundaries, In Theorems 2 and 3, a simply
connected region is considered. Special points of interpolation
are given, these depend only on the parametric representation
of the boundary curves and not a conformal map., These
points are the image points of the Chebyshev polynomials.

Finally an example is given for a multiply connected region.

As is well known [2] Runge’s beautiful theorem shows us that
there exist certain “equidistributed” points on the analytic curves such
that if we interpolate at these points the interpolants converge to the
function. However, the proof depends on knowing the conformal map
in order to know what the interpolation points are. Here we shall
give conditions that do not require knowledge of the conformal map
but for convergence depend on how far we can reflect. Along with
these, we shall give simple error estimates. Moreover, we shall show
that possible interpolation points are the images on the boundary of
roots of the Chebyshev polynomials.

The aspects of this paper which are novel are

(i) the use of reflection

(ii) interpolation at boundary points which are gotten directly
from the parametric representation of the boundary and do not depend
on a conformal map
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(iii) the use of the images of the roots of the Chebyshev poly-
nomials as possible interpolation points.

Notation, Let R be a connected set whose boundary is I". Let
I'=ryr*y..- JrI™ where the IV are bounded analytic contours in
the z = x + 1y plane given by Fi(z, y) = 0 with (F})* + (F})* = 0 along
Ii,j=1,2,.--,s, where the F7 are real-valued analytic functions of
2 and y. We assume further that the IV are pairwise disjoint. Let
I contain in its interior [™,I®, -.-,I'"* and contain in its exterior the
point at infinity. Let /7 contain in its interior ¢; 2 < j < s. As shown
in [3] there are “reflection” functions G;(z) defined on a neighborhood
DiyIiyDiof IV, Assume G(z) single-valved on D7 IV U D’ [3] shows.

(1) z=G,k) is IV,

(2) G,(z) is analytic on D’ U I¥ J Dé, where D’ is contained in
the connected R and D’ is contained in the complement of IV U D’ for
71=12,...,8,

(3) The transformation Z = G(z) is an involution; i.e. Z =2

(4) If z is in D7 then % is in D7 and if 2z is in D then 2 is in
D,

(5) G[D7] = D and G[D’] = D’. We assume the boundary of [,
that is not I, is a contour C’ and Gy(z) is eontinuous on D’ U CY,

THEOREM 1. (H 1) Let f(z) be an analytic single valued function
on R whose boundary is I' such that the real part of f(z) solves the
Dirichlet problem in R with real boundary values B;(z) on IV where
B;(2) are single-valued and continuous in D’ U YD UC? and analytic
in DIy iy Di. Let f(z) be continuous and single-valued on R U I".

H. 2) Let 2, z,{jz, ces, z,{jnﬁl, n;=0,1,2, ..., be opoints of
Ii,j=1,2,---,s. Let p}(2) be the polynomial in z of degree m,
that agrees with By(2) at 2., Zup, ** ) Znpm s O0d let pz;j(z) @2=j5=59)
be the polynomial in 1/(z — a;) that agrees with B;(z) for z — a; = 2} st
B oy R0 where a; U8 @ point inside ¢’

(H. 3) Let

n3+1

oL, = min [T |t —2z,]|
1 ton O1 k=1 1

n3+1

! = max z— z
#nl z on 'l I:cl;[l | ™k [

and
'nj+1

0, = min T[]
I toemed k=1

sl
71,_7‘1

¢, = max []
J zon ) k=1
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(H. 4) Let 11/6;, —0as n;—oo,j=1,2,-+-,5. Then for

1 1 1 1 1 1
== P ’ —— y . y d = {— y P——— 9 LR ..___.__,} .
# < n, = n, n, > and | p] = max Ny M Ny

(C. 1) R.(2)= Zj-qpi;j(z) converges uniformly to f(z) in RUTl
as | p1|— 0 and thus Re R,(2) converges uniformly to w(x,y) in R
and uniformly to B;(z) on I,
(C. 2) Moreover in RUI:
. L;M

1 i i 157
@) — Bu@) | = = % =5 4,107,

where L; = length of C7', M; = max | f(t)| and 0; = inf min|t—z].

t on 0J zonlJ tongl

Proof, In order to avoid notation that only confuses, we shall
prove the theorem for the case s = 2.

We first analytically continue f(z) into RU I U Dryry D Let
Fr@) = fIG,@)] for z in IV yDi. f¥(z) is defined and analytic for z
in Iy Di since £ = G,(z) is in D’ for z in Di and G,(2) is analytice
for z in I yDi. But f}(z) = f(z) for z on I/, thus on I/

f@) + f} @) = 2B;(@) .

Thus f(z) = 2B;(z) — f*(z) analytically continues f(z) into Iy D’
since f(z) is continuous up to and on /¥, Moreover, f(z) is continuous on
I'i y Di | €/ since G,4(2) and B;(z) are. Thus f*(z) = f,[G®)] analytically
continues f*(z) into I/ U D¢ since f}(z) is continuous up to and on [,
Let a,1(2) = (2 — 2w)(@ — 20) *+ (2 — Znasd)

(1 ty_t 1y (1 __1
Bl = <z — @y zfnx‘)(z — @, zfn) <z — Oy z:t'm+l) )
Then for z on I;
I | [ ani(®) — () dt
Pan(?) ot Jot t —z Qi)
L £ _fO Ban) = Ban® 4
2t Je2 £t — 2z Bnsi(t)

where p,.(2) is a rational function of z, p,.(2) = P.(z) + p%.. () in
which p.(z) is the polynomial in z of degree < n got by interpolating
f(z) along I at 2%, 2%, +--, 2L, and p%.,(2) is the polynomial of degree
m+1 in 1/(z —a,) got by interpolating f(z) along I™ so that
Phfa, + 2%;) = f(z%;). To see the latter let ¢ =1/(z — a,) and y =
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1/t — a;) then B,..(t) = b, (y) where b,.,(y) is a monic polynomial
in y of degree =<m + 1, thus we have

Busl®) = Burs(d) = bus(@) — buis(®) = (@ — 1) 5 as(o)y’

where a;(x) are polynomials in « of degree <m. But

T —y= 1 _ 1 = (t — 2)ay
2 —aQ, t—a,

thus

S J@)  Buwis(t) — Buii(2) dt
ot —z Bm+1(t)

is a polynomial of degree <m + 1 in 1/(z — a,). The error for z on
I’ is given by:

F@) — Donlz) = 1 S ft) a,..(z) dt — 1 S J@t)  Bnii(2) dt .

271 Jor t—2z a”+1(t) 2m1 Je? t—2 Bm+1(t)
Note that:

|@pii(®) | < ), |Xpss(t)| = 0) for z on I and ¢ on C* and:

11
z—"ag Zfﬂ_z——ag—zz, t'—'a2
1 1 t—a,— 2 2 —a,

t—a, zn

and thus

Bn+:(2) < ﬁ;".“. for z on I'* and ¢t on C.,

Bm+1(t)

From these it follows:

76) = pun(a) | S o{ 2l e 2L Sl gor  on

where L; is the length of C7,

M; =max|f(t)|, and 6; = inf min |t — 2|
t on 0J zonlJ tonct
which is the result.

We next consider the case when I" is a single analytic contour
and (C/ = C) we write I' in parametric form as z(¢) = x(d) + iy(0)
where —1 <0 =<1. Let |2(0,) —2(0)| = A|0o,— 0,|, let I" contain
the origin and
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THEOREM 2 (H. 1) Let f(z) be an analytic single-valued function
on R whose boundary is I" such that the real part of f(z) solves the
Dirichlet problem in R with real boundary values B(z) on I" where
B(z) is a single-valued analytic function on DU’ UD continuous
on TUDUC. Let f(2) be continuous and single-valued on R U I".

(H. 2) Let 27 = z(0}) where

U?ZCOS[(Z.’).—].)TZ'/(Z’}’L—{-Z)],j=1,2,'--,’n+1
(H. 3) 6= inf min |t — 2|

zonl ton0

H. 4 A<2.
Then

C D 2o = 3 fle ——2eD | where

W,+1(25)(2 — 27)

Wai:(2) = 112! (z — 22) and prime denotes differentiation, converges

uniformly to f(z) on RUI as n—
LM A n+1
— <z

€2 If@)-p@)| s 2 (L)

where M is a constant depending on f, L is length of I.

Proof. As in the proof of Theorem 1 we have for z on I”
£&) — pu@) | = L= Mmax | w,..() /57
27‘[ zon I’

But

[@,4,(2) | = [(z — 20) (2 — 23) -~ (2 — 234) |
S A (0 —0o)o —07) - (0 — 03y

where the o7 are the roots of the Chebyshev polynomial
T,.(o) = cos[(n + 1) arc cos o]
of degree n + 1. Thus since (¢ — a?)(¢ — 0}) -+ (0 — o,,) is monic
| @nii(2) | S AT, 44(0)/27
Thus

n+l
max | 0,.()| < A2 and [ £G) - pu)| = L ()

Next let I': z(s) = x(s) + 2y(s) where s is arc length 0 <s < L.

THEOREM 3. (H. 1) Same as Theorem 2.
(H. 2) Same as Theorem 2 but 2% = z(s?) where
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8= 2 cos [(2 — D/2(n + D] + -, 5 =1,2, -, m+ 1,

(H3) 0d=inf min|t —z].

zonl ton(
(H 4) L < 4o.
(C 1) Same as Theorem 2.
LM n+1
< M
€2 176 - p@| =28 (L)

where M 1s a constant depending on f.
Proof. As in the proof of theorem for z on I":
|76) = Pue)| S -2 M max | 0,,() /07 .

But since |z — 27| < |s — s?| where z = z(s) and 2? = z(s?) and since
[(8 —8M)(s —87) »+- (s — 8y,) | S L*+1/2+! see e.g. [1] we have

176) — pae) | = 2 (L)

ExamPLE. We shall now apply the ideas of this paper to a par-
ticular geometrical configuration. Let

I be a circle of radius 15 centered at the origin

I? be a circle of radius 1 centered at (—13, 0)

I® be an ellipse

xZ
aZ

yz
+—i)'2—=1, a=1.075, b=1.
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Let R be the interior of I less I™, I and the interiors of I™ and I,
Let f(z) be analytic on R and continuous on RU/MUl?UIl®. Moreover
let the real part of f(z) satisfy boundary conditions B,(z) on I, B,(2)
on I* and B,(z) on I™ where:

B,(z) is analytic on |z| = 15

By(2) is analytic on |z + 13| =1
and B,(z) is analytic in and on I*—{—.395 < < .395,y = 0} See
figure.

For example we might have Re f(z) = P.(x,y) on [* (k= 1,2, 3)
where P,(x,y) is a polynomial.

Then since:
Gi(z) = (15)%=
G,(z) = (z + 13)* — 13
2 2 VZE+ b —
(E. 1) Gg(Z) — Z(a -+ b) =+ 2abVv'z -+ b a a> b see [3]

ad— b

and z = Z = G,(2) on I", we have on I,

which are meromorphic functions that fulfill the requirements of
B,(2), By(2) and B,(2) (in the case of B,(z) we make a cut between the
foci +Va? — b)) .

Let

ro=15exp (k) and @) == 1E=T) 0 @ = T

and

n+1
pae) = 3, flr) —ats®)
k=t A7) — 74)
where the prime signifies differentiation. »,(z) is clearly the polynomial
of degree < n that interpolates f(z) at z=r, on I, k=1,---,n + 1.
Next let

S, = exp( mzir: T k)

and

Bm+1(z)=(z+113 —-Sl—xz—f'ig“si) "°(z+113 B sjﬂ)

and
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— & Bm+1(z)
a.(2) = 2 f(s, — 13)
& Bl.(s, — 13) (SL -~ +1 - )(s,,)z

¢.(2) is a polynomial of degree < m in 1/(z + 13) such that ¢,(s, — 13) =
f(s, —13) where s, — 13 ison /%, k=1,2,---,m + 1,
Finally let I be the length of the ellipse /™ and

o, =cos[(2k — Vm/2(j + ], k=1,2,---,5+ 1.
Then the ellipse /™ can be written
2(0) = x(0) + 1y(0) = a cos (2na/l) + ib sin 2no/l), =12 =0 £ 1/2

o is are length parameter shifted. Let

tﬁmwmud@m=%—3%_an(L~g

and

j+1 .
() = 2 £t Fal®)
Bt (4= = )@
r;(z) is clearly the polynomial in 1/z of degree <j such that »;(t,) =
f@t) k=1,2 --+,5 + 1 where ¢, is on I
Then the assertion is

Pa(2) + qn(2) + 75(2)
converges uniformly to f(z) on RUI"UI* U rI*® as

Lol .
n m g
For I'", we use Runge’s theorem. Since B,(z) is analytic on I™,
then f(z) can be continued across /™, i.e. f(z) is analytic for 15 <
|z| =15 + ¢ where ¢ is some positive number. Thus in the notation

of the theorem

n41
0, = min |[I (¢t — ;)| = min |¢** — 15*+|
|t|=16+8 k=1 Jt|=16+¢

= min 15" |z** — 1| = 15" min {¢[**' — 1}
lri=1+e/18 ITi=1+e/15
= 15"+Y{[1 + ¢/15]"+* — 1}
n+1

pn=max | [ (z — 7)) | = 15" n;ax [{*+t — 1] £ 2-15*
jz]=16 k=1 1¢1=1

and
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E 2) ul/dl < 2/{[1 + ¢/15]*** — 1} — 0 as n — oo,

For I, since B,(z) is analytic on /7, then f(z) can be continued
across /7, i.e. f(¢) is analytic for 1 —e = |2+ 13| =1 where ¢ is
some positive number. Thus if C* = {z: |z + 13| =1 — ¢} we have:

i m+1 1 _ 1 _ 1 m+1—
max | 6..(e)| = max | 1T (-5 — +)| = max|(55) " — 1
=m xl(i)wrl——ll =2
igi=t I\ g

and

o (t+113)"'+1__1l

ton 02
= min |(2)" - 1|z (25)7 -1

min | Bp.i(t) |
t on 02

From these we see that

max [ Bm+i(2) | 2

(E. 3) zo'n..l" é

min | B,4.(¢) | ( 1 )’"“ _1
" 1—¢

—0as m— o,

For I we note from the reflection function G(z) given by (E. 1) that
the interior of the ellipse /™ minus the line —¢ <z =<¢, ¢ = a* — b’
is reflected exterior to the given ellipse but interior to the ellipse e,

2 432
4+ L =1
A2 b2

a

where & = (a + b%)/c, b = 2 ab/e.

In the case of our ellipse we have a = 1,075, b =1 and ¢ = ,395,
@ = 5.46, b = 5.44, thus e, is contained in I™, and does not intersect
or contain points of /™ and thus f(z) can be extended to be analytic
in I* —{z| —.395 < & < .395, y = 0}.

The length of the ellipse /™ is given by:

1= 4a§"’21/1 S od 0
1]

where

k=c/a <1, In our case k = .368 and thus
l = 4a (1.516)

using a table for elliptic integrals. Let ¢® be the rectangular contour
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(-39 —eg2=.3B+ey=—¢), =35 +¢ —c=y=£e,
(-8B -85 +ey=¢, (= —.35—¢, —c<y=e

where € > 0 is arbitrarily small. Then consider

1 S (@) K;.,(2) dt .

21t Jod t — 2z Kjy(t)
But
YR A
| £50(2) | = kI;Il ('z" tk> kI;Il L2 .

g — g,l/2 l +1’+‘l€—a[
< k < kL. . o =are len th,
£ Il ——F— Tallz] <2> g

k=1 =1 | tk

where —1 <6 <1 since |[z] =1 for z on I, Also for ¢t on C*

t,>(a—c—77€)’+‘ﬁl 1

by —
|Eja(®) | = l H CTE T

tit

where 7 is some fixed constant. But since || < ¢ + ¢/2 for ¢ on ¢
we see that

c — 775 j+1 541 1
@ 2 (S5F) T D
Combining the above results gives
=k, . 0+51/— 2= | T, (6
A= | mien()] s (222 (5) "2 1 750))

where we have utilized the fact that the ¢, are the roots of the
Chebyshev polynomial T,,,(8) = ecox [(§ + 1) are cos6]. Thus

asa(_et T YLy

a—c— %8 4
But
l 1 a—c—e 1 .680 — 7e
-~ =1516 < = = = 1.60
a <% orev2 107 3% 11’ + 9

where g(¢) — 0 as € — 0. Thus for ¢ sufficiently small

E. 4 < 207

®. 4 f c+evV2

Utilizing (E. 2), (E. 3) and (E. 4) we have from Theorem 1 that
D.(2) + D) + r;(z) converges uniformly to f(z) in Ryryr*yrs
as (1/n) + (I/m) + (1/5) — 0.
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We remark finally that there would be no new difficulties if 7° had
contained in addition IM*UZI® Ul where I™* is the cirele |z — 107] = 4,
I® the cirele |z + 10%] = 4 and ™ is the circle |z — 12| = 2,
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