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L. Sario has extended R. Nevanlinna's concept of defect
to functions defined on WP Riemann surfaces. He has shown
that for a large class of functions the defect sum ^δ(a) is
bounded above by 2 + η, where η is a number depending on
the topological complexity of the surface and the rate of growth
of the function under study.

By studying the relation between the rate of growth of a
meromorphic function w and its P-derivative wP = wz\{dp\dz +
idp*ldz), where p is a capacity function, and z is a local
variable, we are able to establish a bound that implies that
of Sario and can be smaller than 2 + 37. It is also shown that
the classical theorem of Picard holds unchanged for the
meromorphic function wP provided that w has maximum de-
fect. In the concluding section a version of Milloux's extension
of Nevanlinna's second main theorem is given for WP surfaces.

Let W be an open Riemann surface and w a meromorphic function
on W. We shall restrict our attention to surfaces WP on which there
exists a function p with the following properties:

( 1 ) p is harmonic on W — {ζ0}, where ζ o e W is fixed,
( 2 ) in a fixed parametric neighborhood D containing ζ0, the

function u(ζ) = p(ζ) — log \j(ζ) — j(ζ0) \ is harmonic and u(ζ0) = 0;
j : D —> {z : I z \ < 1} is some fixed conformal homeomorphism,

( 3) for k e [— 00 y kβ) — E, where Ec [— 00 ? kβ) (kβ S °°) is at most
countable, Ωk = p""1([— °°, k)) is relatively compact and regularly em-
bedded, and

( 4 ) as & tends to kβ, Ωk exhausts W.
For example, it is known that all parabolic surfaces (WeOG) are

WP surfaces (see Z. Kuramochi [1], M. Nakai [3], L. Sario [6], [7]).
For WeOG, kβ — 00. A number kf is an element of E if and only if
dp/dx = dp I By = 0 for some point of the level line βk, — p~\kf). The
number of such points in any Ωk is clearly finite.

2A* For some k, Ωk is regularly embedded and conformally equiva-
lent to the unit disk. To simplify notation we shall assume that this
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is the case for k — 0.
L. Sario introduced the following proximity function

1 Γ + 1m(k, a) — — 1 log dp* , a Φ co f
2ττ J βk—βo \w — a

m(k, oo) — m(k, w) — — \ log | w \ dp*
2ιK J βk—βo

and the counting function

S k

n(h, a)dh + no(a)k ,
0

where n(k, a) counts (with multiplicities) the number of times w assumes
the value a in Ωk — Ωo. The term no(a) does the same with respect to
ΩQm For a = oo one often writes N(k, w). The characteristic function
is T(k, w) — m(k, w) + N(k, w), and the first main theorem is as follows:

THEOREM. For w nonconstant and, meromorphic on W and for
any value a

( 1 ) m(fc, a) + N(k, a) = Γ(jfc, w) + cp(&, α) ,

where φ(k, a) — 0(1). Furthermore φ(k, 0) = 0.

2B* The defect of a value α is defined to be

δ(a) = lim m ( f c - α ) = 1 - BE

F Γ(& )
Obviously 0 ^ δ(α) ^ 1. If e(k) is the Euler characteristic of Ωk — Ωo

and E(k) = \ke(h)dh, let
Jo

β , w)

L. Sario [6, 7] has shown that provided T(k, w) grows fast enough

δ(at) S2 + η
ί—1

for any finite g, and that if η < co the same inequality holds when the
sum is taken over all a for which d(a) > 0.

3 A* A function w defined on a Riemann surface W is meromorphic
if for any parametric neighborhood D, woj-1 is meromorphic in j(D).
A derivative wz can be defined in D, but in general it cannot be ex-
tended to yield what one could call the derivative of w; wz is covariant,
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not invariant. But the same is true of

dp , -dp*p = J^L + i
dz dz

so the quotient

Wτ, =

is invariant on W. We shall call this meromorphic function the P-
derivative of w. The P-derivative plays a role similar to the one played
by the ordinary derivative in the classical value distribution theory (cf.
especially E. Ullrich [8], [9]).

There is a close relation between the growth of w and of its P-
derivative. Let q > 2 finite complex numbers au , aq, a{φ ajΊ i Φ j ,
be given. Form the function

pί w(ζ) - aά '

which for fixed i may be written

w(ζ) - a{

Then set 7 = min i?ί : i (| a{ — aά |, 1), and suppose that ζ' e TF is such that

( 2 ) | w ( O - α * l < ^ .

One easily establishes (see R. Nevanlinna [4], P. 242) that

lo+g — — i < log |/(ζ') I + log 3 .

For A; > 0 let /3^ be that portion of βk whose points satisfy (2), and
let β"t be the complement of β'ki with respect to βk. Clearly we have

1 f + 1
m(fc, ai) = — \ log . dp*

2π )β'ki \w — CLi]

+ A-Π log 1 dp*-( log- ± -dpΆ,
2π Uβfa I w — a,i I Jβ0 I w — α41 J

and after setting

=±-\ lθg\f\dp*~ J - t
2π h 2π ΐ=i

we conclude that
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Σ m(fc, a,)^M log I/I dp* + log 3 + q l o g ^ + M = m(k, f) + M',
i=i 2πjβk-β0 7

M' constant.
Since / = w~P

1wPf, the inequality

( 3 ) m(k, f) S m(k, Wp1) + m(k, Σ Wp ) .
V w — aj

+
is an obvious consequence of the subadditivity of log. By virtue of

the first main theorem we can write

m(ά, Wp1) = T(Jc, wP) — N(k, Wp1) ,

and consequently

, wp1) - m(k,
w — a

As in the proof of (3) one shows that

( 4 ) m(ft, wP) ^ m(fc, w) + mffc, ^
V w

while the inequality

(5) N(k, wP) ^ N(k, wz) + N(k, Pς1)

follows from the definition.
Although wz is only locally defined, the multiplicity of a given

pole of wz does not depend on any particular choice of the local variable.
In fact, if w has a pole of multiplicity v at ζ", then wz has one of
multiplicity v + 1 at ζ". The well-defined function n(k, w) — n(k, wz) —
n(k9 w) therefore counts the poles of w in Ωk — ΩQ exactly once. Set
N(k, w) = N(k, wz) - N(k, w).

A similar remark is valid with respect to the zeros of the covariant
quantity Pz. The functions n(k, P~λ) and N(k, P~λ) are consequently
well-defined. In IB we remarked that the number of points in Ωk where
dp/dx = dp/dy = 0 is finite. In fact, this number does not exceed the
Euler characteristic e(k) of Ωk — Ωo. More exactly, if one applies the
Riemann-Roch theorem to the double of Ωk and the meromorphic dif-
ferential obtained by extending Pzdz using the reflection principle, it
can be shown that e(k) = n(k, P^1), and hence

E(k) = N(k, P:1)

(cf. B. Rodin [5]). Inequalities (4) and (5) therefore imply the relation

( 6) T(k, wP) ^ T(k, w) + N(k, w) + E(k) + m(k, ^) .
\ w /
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We have established that for q > 2 finite values al9 , aq

Σ m(k, a,) + N(k, w~P

ι) + R,{k) ^
ί = l

g T(fc, to) + Λf(ft, w) + E(k) + R2(k) ,

where

M = -m(k, Σ w * ) - M'
V w — α, /

L. Sario [7] has shown that for any finite number s of complex
numbers bίt

(O(k + log T(k, w)) , WeOo

1 0 1 1 - ^ — + log T(k, w)) , Wϊ Oa

except for k in a set of intervals zίλ so small in total length that for

λ ^ 0 and We OG, [ eλhdh is finite, and if Wί OG and λ > 0, \ eλl{kβ'h]dh

is finite.
We have proved the following

THEOREM. Let q ^ 3 jίwiίe complex numbers au , α?, a{ Φ ah

i φ j 9 be given. For a function iv meromorphic on a Riemann sur-
face W the folloiving inequalities are valid:

( 7 ) Σ ™(k, a%) + N(k, w^) + R,(k) g Γ(fc, wP)

^ Γ(fc, w) + N(k, w) + E(k) + R2(k) ,

where for i = 1, 2

|O(fc + log Γ(fc, w)) , We Oa

Ri{k) = of—1-— + log Γ(fc, w)) , W$ OG

except for he Λλ such that if WeOG and λ ^ 0, I eλhdh< oof

TF^O^, ίfeβ^ ( eλ'{kβ-h)dh< oo /or > 0 .

As a corollary we have the following useful result:

COROLLARY. Let q ̂  3 different finite complex numbers be given.
Then for tv meromorphic on W
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q

( 8 ) Σ m(k, a>i) ^ m(k, Wp1) — Rx{k) .

4AΦ We now turn to some consequences of the above results. In
discussing defect values it is customary to impose the restriction

JL \ IV • VXJ J 7 T/Γ7" r* f \

(9) — τ _ - o o a β f c - o o , T7eθ«,

( ^ - fc)Γ(fc, w) -> oo as fc — fcβ , W<£ OG ,

and we shall do so. This guarantees that w behaves in some sense as
it had an essential singularity on β (cf. L. Sario [7]).

Inequality (7) implies that
q _

m(k, w) + Σ m(k, «i) ^ T(k, w) + m(k, w) + N(k, w)

+ E(k) + R2(k) - R,(k) ,

or that for any q > 3 different values, finite or infinite,

έ m(Jfc, a,) ^ 2Γ(Λ, w) + E(k) + Λ2(A?) - ^(fc) .

When one divides both sides of this relation by T(k, w) and takes the
lower limit as k—»kβ 5Ξ °o y one concludes in view of (9) that

(10) Σ δfa) ^ 2 + 7] .

If 07 < 00 it follows that there can be at most a countable number of
α's for which δ(a) > 0, and since (10) holds for all q > 3 we have the
result mentioned in 2B.

4B* However this result does not make full use of (7). Relation
(8) implies that for q > 2 different finite ai

q wnilf n \ ΎViilf nι*ι~^\ Tίlr nn \
^~Λ IIV\JV) ^i) -̂** 11 OX fv ̂  UU p J J. \Λ/, IΛ/pf ι

w)- τ(k,wP)

and (7) allows us to write

As a consequence of these inequalities we have

, w)

and
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(14) J : δ(a,i) ^ Δ(O; wF)(2 + η- β(~)) ,

where

Δ(O;wF) = ΪΓ~ ™n~
Γ(fcf

4, w)

Clearly the value of Δ(O; wF) lies between zero and one. Provided
η < co the defect sum on the left can be extended over all finite α,
since the bound on the right of (14) is independent of q:

(15) Σ 3(α) ^ Δ(O; wF)(2 + η- β(co)) .

The absence of S(oo) from the sum on the left does not decrease the
usefulness of this result. Indeed, the contrary is true, since
<5(co) ^ Θ ( o o ) ^ 1.

In passing from (13) to (14) one has a choice: one can apply the
upper limit to the first term on the right of (13) and the lower limit
to the second or vice versa. If one makes the latter choice, the result
is

(16) Σ δ(a) ^ o(O; wF)(2 + η- 0(co)) ,

where

T(k,w)

-*tr\ \ T in(k,o(O; ivp) — lim — ^ ^
T(k, w)

in summary, we have this

THEOREM. Provided ΎJ is finite, the sum Σα̂ «> δ(a) for functions
satisfying the growth condition (9) is bounded above by
Δ(O\ wP)(2 + 7j- Θ(co)) (or by 3(0; wΓ)(2 + η - ©(-))).

It follows that if 3(0; wP) is zero and rj finite, then any meromorphic
function satisfying (9) can have at most one defect value, viz. a = oc,

4C* That it is possible for a function meromorphic on an abstract
Riemann surface to have more than the classical two Picard values, or
that its defect sum can exceed two, is (except when the function
grows too slowly) due to the generally more complicated topological
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structure of an abstract Riemann surface. The presence of η in (10)
makes this obvious. One might almost conjecture that the defect sum
must be substantially over two for functions defined on more com-
plicated surfaces. We shall show that this is not necessarily the case.

THEOREM. Let the nonconstant meromorphic function w satisfy
(9) If Σ ^ ( α ) — 2 + Ύ) (17 < °°), then the defect sum for wP cannot
reach three. In particular, wP can have no more than two Picard
values.

If we let 7]p = limk_>kβ E(k)/T(k, wP), then the defect sum of wP

is bounded above by 2 + ηP. We shall show that under the hypothesis
of the theorem ηP < 1.

From (8) it is clear that

Σ *(«) 2£ Mm ̂ Λ . ,
«*~ k=zrβ T(Jc, w)

and using our hypothesis we conclude that

lim ΐΦ^l 1

— T(k,w) ~ '

By definition and the above estimate

Vp = lim m = lim J_m_ \T(k,wP)y\
1 ΰ^rβ T(k, wP) i^Fβ I Γ(fc, w) L T(k, w) J i

~ *—β T(k, w) L ^ T(k, w) J ~ 1 + η

which establishes the theorem.

5 A* The nth P-derivative is defined inductively as

Wp{n) = W ^ z .

LEMMA.

(17) N(k, wp{n)) ^ N(k, w) + nE{k) .

The proof of this lemma is by induction and rests on the fact that
w has a pole at a point ζ e W if and only if w0 does.

THEOREM. Provided the meromorphic function w and the surface
W are such that (9) holds and rj < co 9

(18) T(k, wp{n)) ^ Γ(fc, w) + nN(k, w) + ^{n + ΐ)E(k) + R{k) ,
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where R(k) — o(T(k, w)) except for k£Λκ as in Theorem 3A.

For n = 1, (18) is the second half of (7). Assume that (18) is
valid for n = m — 1 (m ^ 2):

(19) T(k, wp{m^) £ T(Jc, w) + (m- l)N(k, w) + ^ ( r o - l)E(h) + R(k),

where R(k) — o(T(k, w)) except in Δλ. For the meromorphic function
Wp(m-i) inequality (7) yields the relation

(20) T(k, wp{m)) ^ T{k, wp{m^) + N(k, wF{m_1}) + E{k) + R2(k) ,

where

(O(k + log T(k, wF{m^)) , WeOG

OG

except z/λ.
Assume that WeOG. Since rj < oo there exists a fc0 with the

property that k > k0 implies E(k) ^ (η + 1)Γ(A;, w), so for k > kQ out-
side the exceptional set

Hence for fc outside an exceptional set as in Theorem 3A and We OGf

R2(k) = o(T(k, w)). A similar proof for W£ OG can be given. In view
of Lemma 5A, (19) and (20) imply (18).

5B* Corollary 3A can also be extended inductively.

THEOREM. Suppose that the meromorphic function w and the
surface W are such that (9) holds and rj < co. For q finite different
a{ and k not in an exceptional set as in Theorem SA

(21) X m(fc, α<) ̂  m(k, w~}n)) + o(T(k, w)) .

It follows from Theorem 5A that

(22) Πm T(k' Wp[n)S) S{n+l) + —(n + l)η - nΘ(^) .
k-*kβ T(k, w) 2

By dividing both sides of (21) by T(k, w) and then using (22) as in the
proof of Theorem 4B, one shows that
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Σ δ(a) ^ 8(0; wpW)\(n + 1) + ^-(n + l)η - nθ(=o)] .

This establishes the following

THEOREM. Provided w satisfies the growth condition (9) and
rj < co f the vanishing of δ(O; wp{n)) for any n implies that w has at
most one defect value, viz. a — co. On the other hand, if w has any
finite defect value, then for every n^l, δ(O; wp{n)) > 0, unless rj = co.

6A* H. Milloux [2] has studied the relations between the value
distribution of a function w meromorphic in the plane and that of its
derivative wz. In analogy we prove this

THEOREM. Let s > 2, t>2 finite complex numbers au " , α s ,
&!, , bt (bn Φ 0) be given, α{ Φ aό and b{ Φ bj for i Φ j , and suppose
tυ is meromorphic on the Riemann surface W. Then

stT(k, w)^Σ> Nik, L—) + 11 Nik, 1 )

- (ί - l)N(k, —) + N(k, wP) + E(k) + R{k) ,
\ WpJ

tυhere except for k in a set Δκ as in Theorem 3A R(k) — o(T(k, w))
provided w satisfies (9) and ΎJ < co.

It follows from Theorem 3A that

Σ , -λλ ^ T(k, wP) + N(k, wP)
Wl(23) i=i

+ E(k) + R(k) ,

By the first main theorem T(k, wP) — m(k, l/wP) + N(k, l/wP), and on
applying this to (23) we obtain

^ N(k, - i - ) + N(k, wP) + E{k) + R(k) ., ί-—
wP — bj p

Another application of the first main theorem leads to the inequality

(24) tT(k, wP) ^ Σ N(kf ί — ) + N(k, —) + N(k, wp)
»=i \ Wp — Oil \ Wpl

+ E(k) + R(k) + 0(1) .

The left half of the main inequality (7) together with the first main
theorem imply the relation

(25) sT(k, w) ^ T(k, wP) + ± Nik, * — ) - Nik, — ) + BSJc) .
i=i \ w — aJ \ wP I
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On multiplying (25) by t and substituting from (24) we have the
desired inequality. The argument of 5A shows that the resultant re-
mainder term is o(T(k,w)), k$dλ.

6B. The relative and absolute defects of H. Milloux [2] can also
be defined on an open Riemann surface W. We define the relative
defect of a value a with respect to the function w as

Nik,
δr(a) = 1 - lim " P T > α finite>

k-+kβ T(k, w)

c,w)

The absolute defect is

W p " α / a finite
T { k , W p )

As an easy consequence of (12) one establishes the following relation:

THEOREM. Provided w satisfies (9) and fj < co 9

-(7 + 1) + [(2 + V)δn(a)] £ δr(a) £ 1 .
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