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This paper combines two extensions of the theory of
Banach algebras. On the one hand, Arens and Michael
generalized the theory of Banach algebras by introducing the
concept of a locally multiplicatively-convex topological algebra
(abbreviated "Imc" algebra). On the other hand, Arens gave a
procedure for defining on the bidual (the second topological
conjugate space) of a Banach algebra a multiplication which
makes the bidual also into a Banach algebra. We show that
one can put an Arens multiplication onto the bidual of an
Imc algebra, and we study the algebraic and topological
properties of the bidual when it is endowed with such a
multiplication.

In § 2 we summarize briefly the basic definitions and elementary
results needed in the paper. Section 3 contains the main construction
of the paper, the construction in the bidual of an Imc algebra of a
multiplication which is an extension of the multiplication on the original
algebra. For the sake of generality we actually make the construc-
tion on the bidual of any topological algebra whose multiplication is
hypo-continuous. Under this multiplication the bidual is always a
topological algebra. If the bidual is even an Imc algebra we call the
given algebra a bi-lmc algebra. We show that a necessary and suffi-
cient condition that an Imc algebra be a bi-lmc algebra is that the
given algebra be Imc under the strong topology. Consequently any
quasi-barreled algebra—hence any F algebra—is a bi-lmc algebra.
We prove that the property of being a bi-lmc algebra is preserved
in passing to certain related algebras. We end the section by ex-
hibiting two Imc algebras which are not quasi-barreled but which are
bi-lmc algebras.

A complete Imc algebra has associated sequences of Banach algebras
[18, Theorem 5.1], For a given complete Imc algebra, assume that its
bidual is a complete Imc algebra; then a natural question to ask is
how the associated sequences for the Imc algebra and for its bidual
are related. We devote § 4 to this matter. We provide a necessary
and sufficient condition for a sequence in the bidual of an F algebra
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to contain precisely the biduals of the members of a sequence for the
base algebra. Finally, we form a new type of nonnormable F algebra,
which has the topological properties of Lx spaces.

A question which has merited attention is whether or not the
bidual of a given commutative Banach algebra is again commutative.
Arens [3] proved that the bidual of a commutative -B* algebra is also
a commutative B* algebra, and Kamowitz [15] proved that any multi-
plication which makes a B* algebra into a commutative Banach algebra
renders the bidual commutative. On the other hand, Civin and Yood
[8] showed that the bidual of a commutative group algebra is never
commutative unless the group is finite. Nevertheless, we have as yet
no criterion on an lmc algebra which determines whether or not the
bidual is commutative, even if the given lmc algebra is normed. Any
lmc algebra whose bidual is commutative we call a bicommutative
algebra. The main theorem in § 5 is that if each member of an
associated sequence for a complete lmc algebra is bicommutative, then
the lmc algebra is bicommutative. The theorem remains true regardless
of whether or not the lmc algebra is a bi-lmc algebra. We generalize
a theorem of Civin and Yood [8] and show that subalgebras of bicom-
mutative algebras are also bicommutative. We also show that under
some mild changes in multiplication, the property of being or of not
being bicommutative is retained.

In § 6 we present two examples. Our first is a continuous function
algebra whose bidual is commutative and has nonzero radical. Our
second, the one described in § 4, is shown to be a nonbicommutative
F algebra whose bidual has also a nonzero radical.

2* Preliminary discussion* Throughout this paper, E — (E, t)
will denote a locally convex, Hausdorff, linear topological space over
the complex numbers, where E is the vector space and where t is the
locally convex, Hausdorff topology. As in [18], a basis for E consists
of a collection of closed, convex, equilibrated subsets of E whose scalar
multiples form a basis for the neighborhoods of the origin 0 in E.
By a bounded system for E we mean a collection & of closed, convex,
equilibrated, bounded sets in E, such that for any bounded set B in
E there is a member of & which absorbs B. Let E and F be two
linear topological spaces, and let A £ E and B £ F. We say that A
and B are linearly isomorphic if there is a one-to-one map from A
onto B and if the map is linear. A and B are topologically isomorphic
if they are homeomorphic. If E and F are in addition algebras, then
A and B are algebraically isomorphic if they are linearly isomorphic
by a map which at the same time preserves multiplication. Finally,
if A and B are linearly and topologically (and algebraically if possible)
isomorphic, we say that A and B are equivalent, or A = B.
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Let E be an algebra. A subset A of E is idempotent if AA S A.
A topological algebra is a linear topological space which is an (associ-
ative) algebra and which has the property that ring multiplication is
separately continuous. Then we define E to be a locally multiplica-
tively-convex topological (hereafter abbreviated Imc) algebra if E is
a topological algebra and if there exists a basis for E consisting
of convex sets which are idempotent. Normed algebras and locally
convex linear topological spaces with zero multiplication are Imc alge-
bras. An F algebra (resp. F space) is a metrizable and complete Imc
algebra (resp. locally convex space). If (Z7JΓ=i is a basis, we assume
that for all n, Un ZD Un+1, and Un is not absorbed by Un+1. An example
of an F algebra is the space of continuous, complex-valued functions
on [0, 1) under point wise multiplication and with the compact-open
topology. An LB space is a strict inductive limit of a countably
infinite collection of Banach spaces. The collection gf (or any collection

in one-to-one correspondence with g" such that each member of
is equivalent to its corresponding member in gf) of Banach spaces

in the inductive limit space E is called a defining sequence for E.
Let E be a complete Imc algebra, with basis (F λ ) λ € / 1 . For each λ e J ,
let P λ be the Minkowski functional for F λ , and define Eλ — (Ejpi\ϋ),
p'λ), where p'λ is the norm on E/p^(0) corresponding to the functional
P λ on E. Let Eλ be the completion of Eλ with respect to p'λ. Then
Eλ is a Banach algebra, and (Eλ)λeί is an associated sequence (of
Banach algebras) for E.

By the dual of E we mean the space of all continuous, complex-
valued linear forms on E. We denote the dual of E by J5*, and the
members of E* by x*, y*, etc. The dual (also called tf or B(E*,E))
topology on E* is the topology of uniform convergence on the bounded
sets of E. Ordinarily the dual £7* has the dual topology. The weak-(E)
(or tf) topology on E* is the topology of uniform convergence on finite
point sets of E. On E there is the strong (resp. weak-(E*)) topology,
denoted by tb (resp. t8), which is the topology of uniform convergence
on any bounded system (resp. finite point sets) of E*. Always tb is
stronger than t; if tb = t then E is quasi-barreled. Every metrizable
space is quasi-barreled. The largest locally convex topology on E
which yields E* as dual is called the Mackey topology, written τ(E,
E*). Again, metrizable spaces have the Mackey topology. Let E be
a complete Imc algebra with (Vλ)χeΛ as basis and (Eλ)λβΛ an associated
sequence for E. For each λ e A, E* — (Eλ)* is linearly isomorphic to a
subspace of E* by the equation x*(x + p^(ϋ)) — x*(x) for all xeE
[11, p. 98], Since the topology of E is stronger than the topology on
the semi-normed space from which Eλ arises, it is apparent that the
B(E%9 Eλ) topology on E* is stronger than the restriction to Et of
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the B(E*, E) topology on E*. For a set A in E, the polar in E* of
A is defined as A6 = {x* e E* : \ x*(x) | ^ 1 for all xe A}. Likewise,
for a set A* in E*, the polar in E of A* is defined as A*? =
{x e E: I x*(x) | ^ 1 for all ^ G A * } , It is well-known that if A £ E,
then Aά ? is the weak-(i?*) closed, convex, equilibrated hull of A. It
follows immediately from our definitions that the dual and weak-(J^)
topologies on E* have for bases the polars of a bounded system and
the finite point sets in E, respectively.

The bidual of a locally convex linear topological space E is the
dual of the dual E* (with dual topology), and is denoted E**, with
elements written x**, y**, etc. The bidual topology is the topology
of uniform convergence on bounded sets of E*. The bidual normally
has the bidual topology. If A is a set in E, then the bipolar of A
in £*** is A66 = (Aέ)ά. Now if U is a neighborhood of 0 in E, then
U& is a bounded set in E*, so that U66 is a neighborhood of 0 in
E**. In general, however, if (Uλ)λeΛ is a basis for E, then (U£6)κeΛ

is woί a basis for E**. As a matter of fact, it is if and only if E
is quasi-barreled. A second topology on i?** is the weak-(i?*) topology
of uniform convergence on finite point sets of E*. Let us define the
function x on E* corresponding to an arbitrary element x in E by the
relation x(x*) = x*(x), for all x*eE*. Clearly x is linear, and is
continuous for the weak-(£7) topology on E*, and hence for the stronger
dual topology on E*. Consequently x is in I?**. We define E to be
the linear, one-to-one embedding of E into 2?**, where x in E is
mapped onto x in #**. Then E is weak-(2?*) dense in #** [17, p.
300], This result is of prime importance when we show that our
multiplication on the bidual of an lmc algebra is associative.

3* The bidual of an LMC algebra as an algebra* In this section
we first construct a multiplication on the bidual of certain topological
algebras. We assume that the multiplication is always hypo-continuous,
i.e., for each neighborhood U of 0 and for each bounded set B there
is a second neighborhood V of 0 such that VoBQ U. Although this
requirement is sufficient it is not necessary. However, the author feels
it is the weakest manageable condition which insures a multiplication
on the bidual of a topological algebra. From here on through Theorem
3.8, let (E, o) be an arbitrary but fixed algebra with hypo-continuous
multiplication o.1

NOTATION. Though " o" will appear in several contexts as a
bilinear function, we will always know on what spaces o operates if
we look at the elements to the left and to the right of o.

1 The author thanks the referee for his suggestions for this section.
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LEMMA 3.1. Let an operation " o " defined on (E*, E) be given by

(X*oχ)y = χ*(χoy) , yeE ,

where x* e E* and xeE. Then for any x* e E* the linear trans-
formation x—+x*oχ is continuous from E into E* for the dual
topology on E*.

Proof. Left multiplication is continuous in E, so x*oχeE* for
any xeE. The linearity of the map x-+x*oχ is obvious. To show
that the map is continuous, let B be a bounded subset of E. Since
x* is continuous, there exists a neighborhood U of 0 in E such that
Ug {x*}9. But multiplication in E is hypo-continuous, so consequently
there is a neighborhood V of 0 in E such that VoB £Ξ £/. Then for
any x e V, \(x*oχ)B\ ^ 1, whence x—*x*oχ is continuous.

LEMMA 3.2. Let an operation " o " defined on (£?**, 2?*) δe
given by

(y**oχ*)χ = y**(x*oχ) , a; G 2?,

wλere y**eE** and x*eE*. Then for any y** e E**, the linear
transformation aj*~>2/**oa;* is continuous from E* into E* for the
dual topology on E*.

Proof. We note first that 3/**°^* is the composite of x—>x*oχ
and x* oχ —> y**(x*oχ)y each of which is continuous with respect to
the dual topology of E*. Hence y** oχ* e E* for any £*€#* . The
map α;* —*2/**oa;* is linear, and to show it is continuous, let B be a
bounded subset of £/. Since y**eE**, C6 § {̂ /**}? for some bounded
C in E. Then a;*e(5oC) 0 , implies (αrkoj5) g Cά, whence f * o ^ G ^ ,

LEMMA 3.3. i^or απ?/ x*eE*, the map 7/** —>2/**°ί»* /rom JE'*^

wίo -E* is continuous for the bidual and dual topologies on E** and
E* respectively.

Proof. Since #*o#G.E7* for any x G ί?, the map is continuous for
the weak-(l?*) and weak-(i?) topologies E** and E* respectively. Then
by Proposition 6 in [7], the map is continuous for the bidual and
dual topologies on E** and E* respectively.

LEMMA 3.4. Let an operation " 0 " defined on (E**, i?**) be
given by

(χ**oy**)χ* = χ**(y**oχ*) , x* G E* ,
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where #**, ?/**ei?**. Then for any T/** 6 2?**, ίfoe linear trans-
formation #** —>^**oi/** ίs continuous for the weak-(E*) and bidual
topologies on E**.

*Proof. Again the linearity is obvious. The maps x*
and y**oχ*-+χ**(y**oχ*) = (χ**oy**)x* are both continuous with
respect to the dual topology on E*, so their composite is also continu-
ous, whence £**<>?/** e E**. If £ * £ # * , then f * o ^ e ί ? * , so that
a*** __> χ**oτ/** is continuous for the weak-(i?*) topology on E**. Then
Proposition 6 in [7] implies that the map is continuous for the bidual
topology on E**.

THEOREM 3.5. With the multiplication defined on 2ϊ** by
Lemma 3.4, E** is an algebra, and the map x-+x is an algebraic
isomorphism of E onto E in E**.

Proof. With the definition of multiplication given in Lemma 3.4,

i?** is an algebra, by virtue of the linearity of the map in Lemma

3.3, and by definition of sums of functions. Next, if x,yeE and

x* e E*, then (x oy)χ* — χ*(χoy) — χ(χoy)χ*9 by the various definitions
of o. Thus the linear isomorphism embedding x—>xotE onto E in

E** is an algebraic isomorphism.

LEMMA 3.6. For any xeE, the map ?/** —>χoy** of E** into
E** is continuous for the weak-(E*) and bidual topologies on E**.

Proof. Note that for any T / * * ^ ^ * * , x*eE*, and xeE, we have
(χoy**)χ* — ?/**(£*ox), so that the map :?/** —>χoτ/** is continuous for
the weak-(i?*) topology on E**, and then by Proposition 6 of [7] it
is continuous for the bidual topology on E**.

LEMMA 3.7. For any #**£#**, the map y**->χ**Oy** of E**
into E** is continuous for the bidual topology on E**.

Proof. Let C* be a bounded subset of E*, and let B be a bounded
subset of E. If A is also bounded in E, then since multiplication in
E is hypo-continuous, Bo A is bounded, so there is a λ > 0 such that
C*Sλ(BoA)\ Since (C*oB)A = C*(£oA), we have C*oJ5SλA6,
whence C*o2? is bounded in E*. Because #** e i?**, there is such a
bounded set B in E for which B6 c {x*ψ. Now let ?/** e (C*oJ5)*.
Then y**oC*^Bί>, and therefore x**oy** e C*ά, so that the map
2/**—• χ**oτ/** is continuous.
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THEOREM 3.8. The multiplication of E** is separately con-
tinuous.

Proof. Follows from Lemmas 3.4 and 3.7.

THEOREM 3.9. If E is an associative algebra, the E** is also
an associative algebra.

Proof. Let x, y e E and 2** e E**m The functions;?**—*χo(yoz**)
and 2**—>(ίo$)o2** are continuous for the weak-(i7*) topology, by
repeated application of Lemma 3.6. By the algebraic isomorphism, E
onto E, they coincide on E. Thus the density of £ in ί?** with
respect to the weak-(i?*) topology yields χo(yoz**) = (χoy)oz** for
all z**e#**. Next, let xeE and z**eE**. The functions y** —>
χo(y**oz**) and #** —»(xoy**)oz** are continuous on 1?** for the
weak-(J5*) topology, by recourse to Lemmas 3.4 and 3.6. By the
preceding sentence, these maps coincide on E, so once again they
coincide on E**, which means that ίo(i/**o^**) = (χoτ/**)o£** for
all τ/**e#**. Finally, let y**, z**eE**. The functions £**->
x** o(?/**o2**) and x** —* (x**oτ/**)o2** are continuous on !£** for
the weak-(2£*) topology by Lemma 3.4, and they coincide on E by the
preceding statement. Hence they coincide on all of J5**, which just
means that i?** is associative.

THEOREM 3.10. i?** has jointly continuous (locally m-convex)
multiplication if and only if E, equipped with strong topology, has
jointly continuous (locally m-convex) multiplication.

Proof. Let A,B,CSE such that i o ΰ g C , and let all closures
be with respect to the weak-(£r*) topology. For each xe A, we have

χoB Q C by Lemma 3.6. Thus for each 2/** e B, we have io^/** £ C,

by Lemma 3.4. Thus A o β g C . If E has the strong topology, then
the map x —> x is a topological isomorphism between E and j?. Further-
more, the closures for the weak-(£r*) topology of the members of a
fundamental system of neighborhoods of 0 in E is a fundamental
system of neighborhoods of 0 in i?**. Thus continuity of multiplica-
tion on j?** is inherited from continuity of multiplication on E when
it is endowed with the strong topology.

REMARK 3.11. Let zeE. Then the maps x** -+χ**oz and
y** —> zoy** are continuous on ί?** for the weak-(I?*) topology by
Lemmas 3.4 and 3.6. Since the maps coincide on E, the weak-(i7*)
density of E in £7** proves that they coincide on £7**. This means
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that the center of E is embedded in the center of E**. Furthermore,
if we assume that E is commutative, then E** is commutative if and
only if the map ?/**—->#**o?/** is continuous for the weak-(i?*) topology
(i.e., if left multiplication in i?** is weak-(i£*) continuous). This follows
from the fact that the maps y** —» χ**oy** and 1/^-^1/^oχ** agree
on E, and the latter is weak-(2£*) continuous. We remark also that
the second adjoint of a continuous multiplicative linear form on E is
a continuous multiplicative linear form on E**, by an argument which
parrots Lemma 3.6 in [8].

EXAMPLES 3.12. We give an example of a topological algebra
for which the Arens multiplication on its bidual cannot be constructed.
Let E be the algebra of all continuous, complex-valued functions
defined and continuous on the interval [0, 1], under point wise multi-
plication and endowed with the restricted LJO, 1] topology. Then on
E the multiplication is separately continuous but not hypo-continuous.
If x* e E* and x e E, then E* corresponds to L f̂O, 1] by the map

x*—>hx* where x*(x) = Ϋhx*{t)dt (see [12, Theorem IV. 8.5]). Then
Jo

for almost all t in [0, 1], hx+ox(t) = hx*(t)x(t), so that " o " is defined on
(E*, E). Next, if £** e # * * and x* e E*, then £7** corresponds to the
Banach space of all finitely additive measures on [0, 1] by the map
x**->m,** where x**(x*) = \ hx*(t)mx**(dt) (see [12, Theorem IV.

Jo

8.16]). Then (x**oy*)χ = Γ'hy.(t)x(t)mx**(dt) for all x** e # * * , y* e E*,
Jo

and x e E. Now for all n define xn by

- 2n2t + 2n , 0 <Lt^l/

Note that xn e E and || xn \\ = 1, for all n. Let x** e E** be a weak-(JS7*)
cluster point of (xn)n=i Let 7/* e E* correspond to hy* where hy*(t) = 1
for all ΐ in [0,1]. Then lim (a**o#*)a;w = 00, so that x**oy*$E**,

n—><χ>

and the second phase of " o " cannot be defined.

On the other hand, we display an example of a topological algebra
with multiplication which is hypo-continuous but not jointly continuous.
It is the algebra of continuous, complex-valued functions on [0, 1],
under point wise multiplication, and with the weak topology resulting
from the sup norm topology (see [22]).

Finally we exhibit a topological algebra whose multiplication is
jointly continuous but not locally m-convex. We let E be the algebra
of continuous, complex-valued functions on [0, 1], under pointwise
multiplication. This time we take for a basis the collection of sets
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V{mn) = {xeE: \x(t)\ ^ mn, all ί in [1 - 1/n, 1 - 1 / ( ^ + 1 ) ] ,

n = l,2, . . . } ,

where 0 < m1 < m2 < and lim mn — oo.

From now on we restrict our attention to lmc algebras. We have

next

DEFINITION 3.13. A bί-lmc algebra is an lmc algebra whose bidual
is also an lmc algebra.

We conjecture that not every lmc algebra is a bi-lmc algebra.
On the other hand, certainly any lmc algebra with zero multiplication
is a bi-lmc algebra, since all the various bilinear forms inducing the
multiplication on the bidual will be identically zero. In addition, any
quasi-barreled lmc algebra (thus any F algebra or reflexive lmc algebra)
is a bi-lmc algebra, since the strong topology on a quasi-barreled
algebra is the same as the original topology.

If E is an lmc algebra, then we define E+ to be the lmc algebra
which is the cartesian product of E and the complex numbers, with
the following multiplication on E^; if x,yeE, and if a and b are
complex numbers, then (x, a)o(y, b) — (xoy + ay + bx, ab). Then E+

is an lmc algebra by Proposition 2.4 of [18].

THEOREM 3.14. An lmc algebra E is bi-lmc if and only if E+

is bi-lmc.

Proof. By MichaeΓs Proposition 2.4 it is enough for us to show
that E+** = E**+. Let members of E+* have the form x* + c,
where x* e E* and c is a complex number. Now to the computation
of multiplications on E+** and on E**+. Let (x* + c)e E+* and
(x, d) e E+. Then for (y, e) e E+ we have

[(x* + c)o(χ, d)](y, e) = {(£* + c)}[(χoy + dy + ex, de)]

= x*(χoy + dy + ex) + cde

— (x*oχ)y + dx*(y) + ex*(x) + cde

= {[(x*o£) + dx*] + [x*(x) + cd]}(y, e) ,

so that (x* + c)o(a;, d) — [(x*oχ) + dx*] + [x*(x) + cd]. In the same
vein, if (y**, b) e £7+** and (x* + c) e E+*, then (y**, &)o(χ* + c) =
[(y**oχ*) + bx*] + [y**(x*) + be]. Finally, for (x**, a) and (y**, b) in
E+**, a similar computation yields

(x**,a)o{y**,b) = ((x**of^) + bx** + ay**,ab) .

But since E+** and E**+ are anyway linearly and topologically iso-
morphic, this shows they are equivalent.



80 S. L. GULICK

THEOREM 3.15. The Cartesian product Πxe^ E\, with product
topology, of Imc algebras Eλ, λ e Ay is a bi-lmc algebra if and only
if for each Xe Λ, Eλ is a bi-lmc algebra.

Proof. The dual of a cartesian product (respectively direct sum)
of locally convex spaces is the direct sum (respectively cartesian product)
of the locally convex spaces, as shown in [16, V.18.10], Consequently
the bidual of a cartesian product of locally convex spaces is the car-
tesian product of the biduals of these same locally convex spaces. By
Proposition 2.4 of [18], subalgebras and products of Imc algebras are
Imc algebras, so our assertion follows.

We remark in passing that to show that every Imc algebra is a
bi-lmc algebra, it would suffice to prove that arbitrary subalgebras of
of bi-lmc algebras are bi-lmc algebras, because by Proposition 2.7 of
[18] a topological algebra is Imc if and only if it is topologically and
algebraically isomorphic to a subalgebra of a cartesian product of
normed algebras. From our Theorem 3.9 any cartesian product of
normed algebras is a bi-lmc algebra, since normed algebras are evidently
bi-lmc algebras. We mention too that the problem of telling when
Imc algebras remain Imc when endowed with the strong topology is
related to questions posed by Warner in [21] and [22]. In [22] he
finds necessary and sufficient conditions for (E, ts) to be Imc. In [21]
he leaves as an open question one which is equivalent to the following:
is an Imc algebra still Imc if it is endowed with the Mackey topology?

We present here two examples of non-trivial, non-quasi-barreled
Imc algebras which are bi-lmc algebras. We use Theorem 3.6 to show
this fact.

EXAMPLE 3.16. Let [0, 1] have the usual topology, and let E
be the algebra C[0, 1] of continuous, complex-valued functions on [0,1]
under point wise multiplication, with the topology of uniform con-
vergence on subsets of [0, 1) which are simultaneously countable and
compact. By a moment's reflection we see that E is an Imc algebra.
First we characterize the bounded sets in E. Let a be a nondecreas-
ing function from the positive integers into the positive integers, and
let A be the collection of such maps. Let a e A and let

Ba = {x e E: \ x(t) | ^ a(n) for all t in [0,1 - 1/n] and for all n}.
It is apparent that each such Ba is bounded in E, since any countable
and compact subset S of [0,1) is contained in [0, 1 — 1/n] for some
n, and Ba is uniformly bounded on S. On the other hand, let D g E
and assume that D is not bounded uniformly on [0,1 — 1/n], for some
n. Then there is a sequence (£m)m=i i n [0, 1 — 1/n] and a sequence
(ff»)Ξ=i i n D s u c h that for each m, \ xm(tm) \ > m. Now (ίw)Ξ=i has a
subsequence (ΐWjfc)Γ=i which converges to a unique limit t0 in [0,1 — l/ri\.
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If we let S = [(ί»Λ)Γ=i] U{£0}> then S is countable and compact, and D
is not bounded uniformly on S, and hence D is not bounded in E.
Thus any bounded set in E is contained in Bai for some aeA. This
means that (Ba)aβA is a bounded system for E. Let F be the algebra
C[0, 1) under pointwise multiplication, with compact-open topology.
Then F is an F algebra with basis .(VΛ)»=i, where Vn = {xeF;
I x{t) 1 ^ 1 , £e [0, 1 — 1/w]}. It is easily shown that F has the same
bounded sets as E. Thus (Ba)aeΛ serves as a bounded system for F.
Using this fact, as well as the fact that F has a stronger topology
then E, it is apparent that E* is (topologically as linearly) a subspace
of JF7*. NOW (V£)~=I may be chosen as a bounded system for F*,
because F is quasi-barreled. Therefore (V£ Π #*)«=i constitutes a
bounded system for 2£*, and thus {(Fw

ά Π 2£*)?}~=i is a basis for
(#, tb). We now show that for each n, (Vn

6 Π # * ) ? = F Λ . Certainly
(Fw

6 Π ΐ / * ) 9 2 FΛ

6 ? = Vn. On the other hand, for any t in [0, 1 - l/ri\,
let m t be the point mass at ί, with mt{£} = 1. Then m t is in V£ Π 2?*,
so that if xe (Fn

ό ί l ί?*) ? , then | α?(£) | = | mt(x) | ^ 1, whence xe Vn.
Thus (Fw

6 Π E*)' — Vn, and the latter is idempotent. By recourse to
Theorem 3.6, we have E a bi-lmc algebra.

EXAMPLE 3.17. Let A be an uncountable indexing set, and let
ΠλβΛ E\ be the cartesian product (without topology) of the EλJ where
each Eλ is a copy of the complex numbers. Let a basis for ΠλβΛ E\
consist of Πλβi V\f where for each λeΛ, Vλ is any neighborhood of 0
in i?λ which is contained in the unit sphere of Eλ with its usual norm
topology. Now let E be the direct sum of J[λeΛEλ1 i.e., all x — (xλ)λei
in IKeΛ Eλ such that xλ = 0 except for a finite set of indices. Let E
have the topology induced from Πλe^-E'λ, and multiplication consisting
of coordinate-wise multiplication. Then E is a Hausdorff locally convex
space [6, p. 22], Since each Vλ is idempotent, it is clear that E is
lmc. We will show that E is a bi-lmc algebra, although it is not
quasi-barreled. We observe that bounded sets in E are of the form
(ILeΛ £) Π E, where for each λ e Λ, Bλ is bounded in Ek, and Bλ = (0)
except for a finite set of indices [7, p. 12], That E is not quasi-
barreled follows from the fact that the set R = {x e E: χ λ G / ί | xλ \ ̂  1}
is a barrel which absorbs all bounded sets of E; but R is not a neigh-
borhood of 0 in E [7, p. 3]. For a set DK^EK^E£, let [ D λ | =
sup {I xλ I : xλ e Dλ} and let D'λ = {x: \x\£ 1/| D λ |}. Let B = I L e , # λ

be bounded in i?, so that Bλ — (0) except for a finite subset Xu , λw

of Λ. Then B g C = Π λ ei Cλ, where

Cλ = {a;λ eEλ.;\ xλ. \ ̂  sup [ sup | j?λ |, n]} , i = 1, , n
i — 1, ' , n

and where Cλ = (0) for all other Xe A. Then C is bounded in E and
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the collection of such C forms a bounded system for E.

Now we look at the dual of E. E* is the subspace of Πλe i Eλ

which consists of all x* — (x*)λeΛ such that x* = 0 except for a
countable subset of indices [7, p. 81]. We describe the neighborhoods
of 0 in E*. In the first place, let C = Πλ€^Cλ be of the form just
described. If #* e (l/n)[(ΐlκeΛ C'λ) Π # * ] , and if yeC, then | x*(y) | =

(X/n) Σ?=i < ^ I ^ 1, so that ^ G ^ . Next, assume that x* e E*
but x* έ IίχelC'1 Then for some λ0 e Λ, ^ 0 g C£o and thus | x^ \ > 1/|CJ.
Let 7/ be defined by yλQ — | Cλo ] and ?/λ = 0 for all other λ e A. Then
ί/eC and | x*(y) | = |#*01 | τ/λo | > 1, so that #* ί Cά . Consequently
(lM)[(Πλe, CI) ΓΊ E*] g ^ g [(Πxe i CD Π E*], so that neighborhoods
of 0 in E* contain neighborhoods of the form (Πxe^CD Π E*, which
incidentally are closed in the dual topology on E*l Consequently
bounded sets in E* are contained in bounded sets of the form
(ΠλeΛ #*) Π E*, where for each λ e Λ, Bt is bounded in E£. We finish
the proof that E is bi-lmc by showing that the polar in E of an
arbitrary such set is idempotent. We may assume without loss of
generality that each J5* is equilibrated and convex, and that | B* \ ̂  1.
Now x* e [(UxeΛ Bt) Π E*] implies that if | a* | = (| xi \)λeA, then
I x*\ e [(Πλe. Bt) Π E*], so that if y e [(Πxe. ̂ Λ*) Π # * ] ? , then \xt\\yκ\£
1 for each Xe A. In addition, if we let XQe A be arbitrary, and if
we take w* e (J[λβΛBf) ΓΊ E* such that w%0 =\B^\ and wt = 0 for
all other XeA, then ze [ ( Π λ e ^ * ) Π E*]9 implies that \wto\\zλo =
\w*(z) I ̂  1, so that |jίλo| ^ 1/| JB*0| ^ 1. From these last two statements,
we see that if x* e [(Πλe. #*) Π E*] and if y, z e [(Πxe. B*) Π ̂ * ] ? , then

l»*(l/2) I ̂ Σ x e , \xt\\Vx\ l«xl ^ Σ λ € . l » ί l l l / λ l = |a?*|(il/|) ^ 1 ,

whereupon 2/2 e [(ΠΛGΛ #*) Π-S*]9. Consequently this last set is idem-
potent, which completes the proof that E, endowed with the strong
topology, is lmc. We note in passing that if our E has any Hausdorff
lmc topology which gives it the above bounded system, then precisely
the same argument shows that E is bi-lmc.

4* Associated sequences* The question which we ask in this
section is whether or not there is any relationship between associated
sequences for E and those for E**. If the lmc algebra E has (Eλ)λeι

for an associated sequence, then we might hope that {(i?λ)**}λej =
(£T)\e,i would be an associated sequence for i?**, in the sense that
for each Xe A, E£* = (E**)λ and {(E**)λ}λeA forms an associated sequ-
ence for i?**. Indeed, for C[0, 1), with pointwise multiplication and
compact-open topology, there is an associated sequence the biduals of
which form an associated sequence for C**[0, 1). To see that this is
not always the case, we consider the following.
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EXAMPLE 4.1. Let C(Ω) be the algebra of continuous, complex-
valued functions on the ordinals less than the first uncountable (with
order topology), where the algebra is endowed with point wise multi-
plication and compact-open topology. Then C(Ω) is an complete Imc
algebra [18, p. 13]; in fact C{Ω) is a bi-lmc algebra. Inasmuch as
the set B = {xe C(Ω): | c c ( ί ) | ^ l , for all teΩ} serves as abounded
system for C(Ω) [13, p. 75, and 23, p. 274], C*(Ω) is normed, so B is
a basis for (C(.Q), tb). But B is idempotent. Theorem 3.6 says that
C(Ω) is then bi-lmc. Let (Sλ)λβΛ be a collection of compact subsets of
Ω such that every compact subset of Ω is contained in at least one
member of (Sλ)λeΛ. Then an associated sequence for C(Ω) can be taken
to be of the form {C(Sλ)}λ€/1. From § 2 we see that C*(Ω) is a linear
inductive limit of {C*(Sλ)}λeA. For each XeJ, let C'(Sλ) be the sub-
space of C*(Ω) which is linearly isomorphic to C*(Sλ), and put the
C*(Sλ) topology on C'(Sλ). Since the topology of C*(Ω), when restricted
to C'(Sλ), coincides with the topology of C'(Sλ), it is apparent that
<7**(Sλ) is equivalent to C**(β)/[C'(Sλ)I\ where C**(Ω)/[C\Sλψ has
the quotient norm. However, [C"(Sλ)]0 contains a nontrivial subspace,
so that on C**(Ω) the Minkowski functional pλ for [C\Sλ)]6 is a semi-
norm, but not a norm. On the other hand, C*(Ω) is a normed space,
and C**(Ω) a Banach algebra, so the unit sphere of C**(Ω) has no
nontrivial subspace. Thus the topology on C**(Ω) generated by the
(^λ)λ€ί yields a topology on C**(β) weaker than the bidual topology.
Consequently {C**(£λ)}λ€/ does not form an associated sequence for
C**(Ω).

Indeed, things are not always so bleak.

LEMMA 4.2. Let E be an Imc algebra and let E** have the
Arens multiplication. Let V be an idempotent neighborhood of 0 in
E and let F* be the subspace of E* spanned by V6. Then F*6 is
a closed, two-sided ideal in E**.

Proof. F*6 is closed in E** because the polar of any set in E*
is closed in E**. We prove now that F*6 is a right ideal in E**.
To this end let x**eF*6 and y** e E** and z*eF*. We will show
that (x** oy**)z* ~ 0. There is some finite m such that z*emV6,
since z* e F* and V6 spans F*. However, V is idempotent, so that
{z*oV)V = z*{VoV)<^z*(V), whence 0 * o F ) g m F 6 , which means
that z* o V is bounded in E*. Now y%* is continuous on E*, so sends
bounded sets into bounded sets. Thus (y** oz*)V — y**(z* o V) is
bounded, so (y**oz*)ekV6 a F* for some finite k. But x** e F*6, so
(x** oy**)z* — x**(y**oz*) — 0, and consequently {x** oy**) e F*6 is a
right ideal. To show that F*6 is a left ideal we must show that
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(y**oχ**)z* = 0. As above, ^ o F g P , so that (x**oz*)F =
#**(*;* o F) — 0. Since V is an absorbing set in E, this implies that
χ**oz* = 0. Consequently (y**oχ**)z* = y**(x**oz*) = 0, and F**>
is a left ideal in E**.

THEOREM 4.3. Let E be a nonnormable F algebra lυίth associ-
ated sequence (£7n)~=i. If E* is an LB space with defining sequence
{(En)*}n=i, then {(i£w)**KΓ-i is a n dissociated sequence for E**.

Proof. Let (En)* and (En)** be denoted E$ and E** respectively.
Let (VX=1 be the basis for E from which (EX^ arises. Then (FW

6A)?=1

is a basis for j£**. Let pw be the Minkowski functional semi-norm for
VJt6. Then p'^O) is a closed ideal in # * * . Since # * * is F space
[14, Corollary 3 to Theorem 1], the associated sequence of i?** cor-
responding to (V£6)n=1 has for members the completions of the algebras
E**lp~\ϋ) equipped with the quotient norm with respect to pn, where
the completion is in the norm topology. To complete the proof it
suffices to show that for each n, E%* = JB**/p~1(0) algebraically and
topologically. Note that this will mean E**lp-\1S) is complete. Let
n be fixed. Let E'n be the subspace of 2?* which is linearly isomorphic
to 2?*, and let E'n inherit its topology from E*, so that E'n and E%
are naturally equivalent. That Ef

n is topologically a subspace of E*
follows from the fact that E* is a member of a defining sequence for
the LB space E*. Now p~\0) = J?:0, so that E**lpz\V) = E**jE'nK
Next, since E'n^EZ, E**/E^ is linearly isomorphic to E£*, where
x**eEή6 maps onto α?*, which is defined to be the element of E**
corresponding to the restriction of #** to E'n. It is evident that the
unit spheres of E**/Eή6 and E%* correspond to one another under the
isomorphism, so that the two spaces are topologically isomorphic. We
have left only the proof that the multiplications on the two spaces
agree. By Lemma 4.2 we know that Ef

n

h is a closed ideal in £7**, sα
that the multiplication in E**/Eή6 is defined by

(X** + EP)o(y**+E?) = (X**oy**) + E'J>.

Let x**, 7/**G£r**, with #**, y%* the elements in E** which corre-
spond to the restrictions to E'n of x** and ?/** respectively. Let " o n "
be the multiplication in En obtained from o in E. Next, let z%eE%f

and let z'ne E'n correspond to «*. We wish to show that (x%* °nyl*)zt =
(x**oy**)z'n. For w,veE, with wn, vn the corresponding elements in
En, we see that (z*onwn)vn = (z'now)v, so that z*onwn in F * corre-
sponds to zf

now in ElaE*. Since yt*eE** corresponds to the
restriction of /̂** to E'n, it is immediate that for all z%eE%, yt*onzt
in El corresponds to y**<>z'n in E'n. Finally, by the same reasoning,
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(xi*°nV**°y**)zi = (x**)z'n. But then the restriction to E'n of (x**oy**)
in i£** corresponds to %t* °nyl* in the linear isomorphism between
E**/Eή6 and E%*, so the isomorphism preserves multiplication.

In the proof of Theorem 4.3 we did not use explicitly the metrizability
of the F algebra. What we need was that for each n, the topology
of E*, when restricted to the subspace E'n coincided with the topology
already on Έ'n (defined to be equivalent to El), plus the fact that the
bipolars of the members of a basis for E formed a basis for the com-
plete space 1?**. Thus we have

COROLLARY 4.4. Let E be a complete quasi-barreled Imc algebra
such that £7** is complete, and let E have (Eλ)λeΛ as an associated
sequence. Assume that for all λeΛ, the topology of E*, when
restricted to Eί, coincides with the topology on E'λ. Then {(£r

λ)**}λei

is an associated sequence of E**.

An example in which the hypothesis of Theorem 4.3 holds is
C[0,1) with the compact-open topology. An associated sequence for
C[0, 1) consists of {C[0, 1 - l/ri\}Z=1, where C[0, 1 - 1/n] has supremum
norm. It can be shown that the dual of C[0, 1) is an LB space,
with defining sequence {C*[0, 1 — ljn]}^. Thus by Theorem 4.3
{C**[0, 1 - l/n]}~=1 forms and associated sequeuce for C**[0, 1). That
Theorem 4.3 does not hold for all F algebras comes from Amemiya's
example [1] of an F space (thus an F algebra under zero multiplication)
whose dual is not an LB space.

Let E be an F algebra. In i?** we now confine our attention to
associated sequences of the form {£r**/p^1(0)}Γ-i, where (pjΓ-i is the
collection of Minkowski functionals for the bipolars of the members
of basis (VjΓ-i for E. We say that such a sequence is a restricted
associated sequence for E**. We will give a necessary and sufficient
condition for a nonnormable F algebra E with associated sequence
(En)n=i to have (E**)^ as a restricted associated sequence for E**.

Let W be a neighborhood of 0 in E, and let E'w be the vector
subspace of E* spanned by W6. We can then give

DEFINITION 4.5. A neighborhood W of 0 in E is smooth if and
only if the function h\E**-»E'w* = (KY\ defined for all x**eE**
by h(x**) = the restriction of x** to E'w, maps onto E'w*.

We mention that a necessary and sufficient condition for W to be
smooth is that the Mackey topology τ(E*, i?**), when restricted to E'w,
be stronger than the weak-(i?^*) topology on E'w. For on the one
hand, assume that the condition is satisfied, and let x'*eEw*. Then
x'* is weak-(£"*) continuous, so by hypothesis x'* is continuous for
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the restriction of τ(E*,E**) to E'w. Thus by the Hahn-Banach
theorem there is an extension of x'* to a continuous linear function
on all of E*. Evidently h is then an onto map. On the other hand,
let us assume that W is smooth, and let x'*eEίf. Then by assump-
tion there is an αj**e£7** such that the restriction of x** to E'w is
precisely a?'*. But then x** is τ(E*, E**) continuous. It follows
directly that τ(E*, E**) restricted to E'w is stronger than the weak-
(E'*) topology on E'w.

THEOREM 4.6. Let E be a nonnormable F algebra with associ-
ated sequence (En)Z=1, where (2£n)~=i corresponds to the basis (Fw)~=1

for E. Then (2?ί*)~=1 is a restricted associated sequence for E** if
and only if Vn is smooth, for all n.

Proof. Assume that Vn is smooth, for all n. Then the proof
that (2<7**)~=1 is an associated sequence for i?** is a repetition of the
proof of Theorem 4.3, since in the proof of Theorem 4.3 we only needed
the property of smoothness. To prove the other half of the theorem,
assume that (E^)ζ^ is a restricted associated sequence for E**, so
that for each n we have E**/Ei6 = E**/p^(0) = Ef

v\ = Ef, where
the isomorphism takes #** + E'J> into x'n*, which itself is the restric-
tion of x** to E'n. If we denote this isomorphism by kn, then every
< * e £ T can be written as fcw(x** + E^), for some x**eE**. But
since Jcn(x** + E'J*) — £** restricted to Eή, it follows that the map
given in Definition 4.5 maps onto Eή*, whence Vn is smooth.

We conclude § 4 with the description of a new F algebra, one
which has topological properties of an Lx space, and whose dual is an
LB space with defining sequence obtained from the F algebra.

EXAMPLE 4.7. For any n ^ 2, let ACn = AC0[0,1 - 1/n] be the
space of all complex-valued continuous functions on [0, 1 — 1/n] which
vanish at 0 and whose first derivatives exist and are absolutely inte-
grable on [0, 1 — l/ri\. If we take the norm of a function in ACn to be
its total variation on [0,1 — 1/n], then ACn is a Banach space, iso-
metrically isomorphic to L^O, 1 — 1/n] (see [12, p. 338]). With pointwise
multiplication ACn becomes an algebra, an in fact a Banach algebra.
For if / and g are in ACn, then

\g'(t)\\f(t)\}dt

- V" {[ιf{t)' ί • / ( s ) ' d s ] + [ ' g'{t) ί]f{s)' ds\}dt
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S \ 1 ~ 1 ' n \ f ' ( t ) \ d t \ l ~ l ' n \ g ' ( t ) \ d t = \\f\\\\g\\ .
Jo Jo

Now we transplant the multiplication of ACn onto LJO, 1 — 1/n]. Define
the bilinear operation Δn on L^O, 1 — 1/n] by

S t rt

yn(s)ds + yn(t) xn(s)ds ,
o Jo

for all xn, yne Lx[0, 1 - 1/n], and almost all t in [0, 1 - 1/n]. Then it
is apparent that almost everywhere in [0, 1], (xnΔnyn) is the function
on [0, 1 — 1/n] whose value at t is the derivative of i xn(s)ds \ yn(s)ds,

Jo Jo

so that the mapping from ACn to LJO, 1 — 1/n] is an algebraic iso-
morphism. Consequently (LJO, 1 — 1/n], Δn) is a Banach algebra.

Next, let / consist of all the functions defined on the half-open
interval [0, 1) which vanish at 0 and which for all n are absolutely
integrable in [0, 1 — 1/n]. Since the function x defined by x(t) —
1/(1 — t) for all t in [0, 1) is in / but not in L^O, 1], I properly contains
L,[0, 1], Let a generating neighborhood system for I be (FJ~= 1, where

for all n, Vn = lxel: Γ"1'* | x(t) \ dt ^ l | . Then the topology on I

is metrizable, and I is complete in this topology, since Cauchy sequences
in I converge pointwise (almost everywhere in [0, 1)) to a function in
I. Note that I is nonnormable, because no neighborhood is bounded.
The multiplication we put on I is an extension of the multiplication
given to LJ0, 1 — 1/n]. Specifically, for x,yel, we define xΔy by the

equation (xΔy)t — x(t)\ y(s)ds + y(t)\ x(s)ds, for almost all t in [0, 1).
Jo Jo

The different Jn transmit the properties of closure, distributivity, and
associativity to Δ. That the unit sphere of (I^fO, 1 — 1/w], Δn) is
idempotent implies that Vn is idempotent, for all n. Consequently I,
with multiplication z/, is an F algebra.

Let pn be the Minkowski functional for Vn. Then I/p'^O) is
linearly isomorphic to I/JO, 1 — 1/n]. Since the characteristic function
of [0, 1 — 1/n] is in /, it is apparent that I/p~\0), endowed with the
quotient normed topology from pn, is isometrically isomorphic to
LJ0, 1 — l/n]% Because p'^O) is a closed ideal in I, multiplication in
I/pΛO) is given by (x + pzιΦ))Δ{y + p~\0)) = (xΔy) + p?(0), for all
x and y in /. For any z e /, let zn denote the restriction of z to
[0, 1 — 1/n]. Then x,y e I imply t h a t (xΔy)n = xnΔnyn. Hence I/p~\ϋ)

is equivalent to (LJ0, 1 — 1/n], Δn) and an associated sequence for
/ is {LJ0, 1 — l/n]}ζ=2. Furthermore, for each n, LJ0, 1 — 1/n] is
equivalent to the factor space L^O, 1 — l/(n + 1)]/Rn, where Rn is the
closed ideal in LJ0, 1 — l/(n + 1)] consisting of all the functions which
vanish almost everywhere in [0, 1 — 1/n]. Consequently Lf[0, 1 — 1/n]
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is linearly and topologically isomorphic to a proper subspace of
I/!*[0, 1 — l/(n + 1)]. One can prove that I* is an LB space, so that
the criterion of Theorem 4.3 is satisfied by {Lf[0, 1 — l/n]}~=2 which
thus forms a (restricted) associated sequence of Banach algebras for
/**. We will put this fact to use in § 6.

5* Commutativity in the bidual of an LMC algebra* What
are necessary and sufficient conditions on a commutative Banach algebra
for its bidual to be commutative? Arens asked this question in 1950.
Although it is still open, progress has been made in [3,4,8,10,15,
20]. It was this particular question which led me to the general
investigation of the biduals of lmc algebras. I am indebted to Professor
Bade for calling my attention to this commutativity problem, and for
our discussions on it. In this section we concentrate on the question
of when commutativity in an lmc algebra is transmitted to its bidual.

DEFINITION 5.1. Let E be an lmc algebra. Then E is bicom-
mutative if and only if as an algebra i?** is commutative.

THEOREM 5.2. Let E = (E, o) be a complete lmc algebra with
associated sequence (Eλ)κeΛ. If for each λ e Λ, Eλ is bicommutative,
then E is also bicommutative.

Proof. Let #**, T/** e E**, and let zf be an arbitrary element in
E*. It suffices to prove that (x**oy**)zf = (y**oχ**)zf. By the
definition of o, χ**o2' and y**oz' are elements of E*. Consequently,
since E* is an inductive limit of the E£, x**oz' and y**oz' and z'
each correspond to an element in E£, for some XeA. Let E'κ be the
subspace of E* which is equivalent to E*9 so that the topology of E'λ
is stronger than the restriction to E* of the topology on E*. Thus
there exist elements x**,2/λ* e E** which correspond to the restrictions
of $** and 2/** to E'λ. Furthermore, let z* be the element in E%
corresponding to zr in Er

λ. If we denote the multiplication in E by "°λ"
then exactly as in the latter part of the proof of Theorem 4.3, we
find that (#**o7/**);z' = (%t* °\V**)z* and d / " o χ * y = (y%* oλχ**)z%.
Therefore

(X**oy**)z' = (Xtoκy**)zϊ = (yZ* oλχ**)zt = (y**oχ**)z' .

,.**However, the z' in E* was arbitrary, so that x**oτ/** = y**oχ*
Consequently 2£** is bicommutative.

We mention that Theorem 5.2 does not depend on 2?** being lmc.
In [3] Arens proved that if S is a compact, Hausdorff space and if
C(S) has the supremum, then C(S) is bicommutative. If T is an



THE BIDUAL OF A LOCALLY MULTIPLICATIVELY-CONVEX ALGEBRA 89

arbitrary completely regular topological space, and if S? generates T
(in the sense of Michael [18, p. 76]), where each member of S^ is
compact in T, then C(T), under point wise multiplication and with
the topology of uniform convergence on the members of S^ is a com-
plete lmc algebra and {C(S)}ses, forms an associated sequence for C(T).
Consequently, by Arens' result and Theorem 5.2, C(T) is bicommutative.
The following theorem generalizes Corollary 6.3 of [8]:

Theorem 5.3. A subalgebra F of a bicommutative algebra E is
also bicommutative.

Proof. It is well-known that F* is linearly isomorphic to E*/F6,
but in general F* has a weaker topology (under the isomorphism) than
does E*/F6. Consequently elements in F** correspond to elements of
(E*/Fψ. But (E*/F6) is linearly isomorphic to F6ί in #**. There-
fore JF7** is linearly isomorphic to a subspace of F66 in i?**, with the
isomorphism given in the following way. For x* in F*, let ext x* be
any extension to E of x*. Then for X ^ G F * * , the function X** on
# * defined by X**(ext x*) = £**(£*) for all x* e F* is in E**, and
the map x **_>χ** i s a one-to-one, linear map of ί7** into F66. Let
#**, 7/** G F**, and let X** and Y** and Y** be the corresponding
elements in ί7^ £ £ * * . Let $* be an arbitrary element of F*, and
ext x* an extension of x* to i?. If 2, w e F, then we have

[(ext x*) oz]w = (ext x*)(z°w) — x*(zow) = (x*oz)w ,

so that (ext x*)oZ = ext (x* 02) on F. Since Γ** is in F ό ά , Γ**
annihilates F ό , so that

[(Γ**oext£*)]z = Y**[ext(x*oZ)] = τ/**(α;*o2;) = [ext (2/** oa;*)]u ,

and hence on F, (y**oextα;*) = ext (τ/**oχ*). Finally, since X** also
annihilates F ό , X**(Γ**oext x*) = X**[ext ( f * o ^ ) ] , whereupon

oχ*)]

o F**) ext x*

Therefore #**o?/** = f*ox** and F is bicommutative.
We now investigate what happens to the bicommutativity of an

lmc algebra when one makes certain changes in multiplication.

THEOREM 5.4. Let p be a continuous, linear operator on the
bicommutative lmc algebra E = (E, o). Define the bilinear operation
J on E by xΔy = χop(y) + p(x)oy for all x and y in E. If Δ is
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associative, so that (E, A) is an Imc algebra, then (E, A) is bicom-
mutative and for all

B**,2/**e#**, X*jy** = x**op**(y**) + p**(χ**)oy** .

Proof. That p**, the second adjoint of p, is linear and continuous
is well-known and easy to prove. Let x,yeE, and x*eE*. Then

(xΔy)x* = x*(xAy) = x*([χop(y) + p(x)oy] =[x*oχ]p(y) + [yoχ*]p(χ)

— p**(y)[x* oχ] + p**(χ)[yoχ*] — {χop**(y) + p**(x)oy}χ* .

Thus xAy = χop**(y) + yop**(χ). Next, let y**eE** and aieS,
There is a net (ya)aeΛ which converges weak-ίJS'*) to 2/**, so that by
Lemma 3.4 (ii), {(xAya)}aβA converges weak-(i?*) to xAy**. On the
other hand, for any x* in i?*,

(xAya)x* = b**(^α)](x*oχ) + i [ ^ o ^ ) ]

= ^α{[p*(^*°^) + ^^ °p(x)]} -^ y**[p*(x*oχ) + ic*op(a;)]

Thus xAy** — χop**(y**) + p**(x)oy**. Now let a?**, ̂ /** e JS**.

Again there is a net (ίβ)βe5 which converges weak-(2?*) to x**. By
Lemma 3.4 (i), {(XβΔy**)}βeB converges weak-(i?*) to x**Ay**. If x* e £7*,
then

(xβ4y**)x* = xβ{[p**(y**)oχ*] + \p*(y** ox*)]} -y x**{[p**(i/**)oχ*]

+ [p*(l/**oί»*)]} = {[ίC^op**^**)] + p**(x**)oy**]} .

**Consequently x̂ ẑί̂ /̂ * = χ**op**(y**) + ^^^(α;**)©^** for all #*
y**eE**, and since (E, o) is bicommutative, the formula for z/ in
JŜ ** shows that (E, A) is also bicommutative.

If E is an Imc algebra, then the maximal ideal space of E, denoted
by ΦE, consists of all complex-valued continuous multiplicative linear
functionals on E. For properties of the maximal ideal spaces of Banach
algebras and Imc algebras consult [18, 19].

THEOREM 5.5. Let Eι = (E, o) and E2 = (E, A) be semi-simple,
commutative, complete Imc algebras with the same closed regular
maximal ideals. Assume that Eλ has an identity element eι% If Ex is
bicommutative, then E2 is also bicommutative, and xAy = {exAe^)°xoy
for all x,yeE.

Proof. Let the maximal ideal space of E1 and E2 be ΦEχ and ΦE2

respectively. If fx is in ΦEχ, then there is an f2 in ΦE2 and a nonzero
complex number a such that ft = α/2. Let x,yeE. Then
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UxΔy) = aflxΔy) = af2(x)f2(y) = (l/α)/^)/^) - (lla)Uχoy) .

Now for x = y = eu Me.Δe,) = ( l / α ) / ^ o βj = 1/α. Thus, f^xdy) =
], so the semi-simplicity of -EΊ yields that xΔy—
Multiplication in E1 is continuous, so if p:E~^E is

defined by p(#) = {e1 Δ e^ox, for all x e E, then p is a continuous linear
operator on E. Now mimic the proof of Theorem 5.4 to show that
E2 is bicommutative.

DEFINITION 5.6. An algebra E is factorable if and only if for
x e E, there exist y, ze E such that x — yz.

In [9], P. J. Cohen showed that if E is a Banach algebra with
left approximate identity, then E is factorable. As our final result in
§ 5 we have

THEOREM 5.7. Let F — (E, o) and G = (i?, Λ) δe semi-simple,
commutative F algebras with the same closed regular maximal ideals.
Assume that F is factorable and bicommutative. Then G is bicom-
mutative.

Proof. Part of the proof is patterned after a portion of the proof
of Theorem 5 in [5]. Let the Gelfand representation of F be denoted
by F. Let elements of F be of the form x. By the proof of Theorem
5.5, for any nonzero f1 in ΦF, there is an f2 in Φa and a nonzero complex
number afl such that f2 = aflfu so that for x, y e F, f^xΔy) = α/ i/1(x o y),

whence {xΔy)f, = afl(χoy)flm Let g be defined on ΦF by g{fi) = afι,

for all fe ΦF. Then goχoy — xΔy, for all x, ye F. Next, define the

operator h on F by h(x) = y if and only if goχ — ym Then h(x) ~

g o x for all x e F. We must prove that h is well-defined. Since F is

factorable, for any xe F there are y,ze F such that x = yoz. Then

h{x) = goχ — goyoz — yJz, so that since F is semi-simple, Λ(#) = yΔz.

Thus fe is defined and uniquely so on F. Because F is semi-

simple, h is linear. To show that h is continuous, assume that

[(xn, Λ(̂ J]Γ=-i converges to (w, z) in the product metric of the product

space F x F. Then clearly (αjw)~-i converges to w in the topology of

F. To show that h(w) — z, let /x be an arbitrary element of ΦF.

Since fx is continuous, limαf^/i) = l im/^xj = /^w) = ^(/i). Conse-

quently lim {goχn)fx = lim [ ^ ^ ^ ( Λ ) ] = g{fd lim ^ ( / x ) = gifjiΰifd =

(gow)f. On the other hand, by assumption {A(a?w)}"=1 converges in

the metric of F to «, so that \imfj[h(xn)] = fx(z). This means that

h{w)fx = (gowtfi = lim (gox^f, = lim [MxJ]/i = ^(/O, and since F is
% n

semi-simple and /x is an arbitrary element of ΦF, we conclude that
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h(ιv) — z. By the closed graph theorem, then, h is continuous. If
for some x, ye F we had xΔy Φ x°[h(y)], then xήy Φ x°[h(y)] =
xo[fe(?/)] = xogoy = goχoy = χz/τ/, a contradiction. Therefore #z4?/ =
χo[^(τy)] for all x,yeF. Now if we use the argument in the proof
of Theorem 5.4, it is apparent that whenever F is bicommutative, G
is also bicommutative.

6* Two examples* Kamowitz proved in [15] that if X is a
compact, Hausdorff space, then any multiplication on C(X) which makes
it into a commutative Banach algebra under the supremum norm makes
C(X) a bicommutative algebra. The first example in § 6 is, then,
known to be bicommutative. However, we give a new proof of that
fact, based on Theorems 5.3 and 5.4. Civin and Yood [8] displayed a
condition which assures one of a nonzero radical in the bidual of a
Banach algebra. In our first example we show that the bidual of our
Banach algebra has an infinite-dimensional radical, even though Civin
and Yood's condition is not met. Our second example is a nonnormable
F algebra which is not bicommutative, and whose bidual has a nonzero
radical.

EXAMPLE 6.1. Let E be the Banach space of all continuous
functions on [0,1] which vanish at 0, with norm equal to twice the
supremum. Let the multiplication be given in the following way. For
x, yeE, and te [0, 1], define Δ by

S i rt

y(s)ds + y(t) \ x(s)ds .
o Jo

Then E is equivalent to a subalgebra of the Banach algebra of all
continuous, complex-valued functions on [0, 1] which vanish at 0 and
which have continuous first derivatives on [0, 1], with pointwise multi-
plication and norm which is equal to the sum of the sup norm and
the sup of the first derivative, as is shown in [12, p. 344], It is easy
to show that E is a Banach algebra; we omit the proof. If we define
p: E—>E by p(x)t = \ x(s)ds for t in [0, 1], then p is a linear, con-

Jo
tinuous function on Έ, and xΔy = χop(y) + yop(χ)f where o represents
pointwise multiplication on C[0, 1]. Consequently, by Theorems 5.3
and 5.4, E is bicommutative. In order to show that i?** has an
infinite-dimensional radical, let t be fixed, momentarily, in (0, 1]. Then
let (xn)n=i be a sequence in E with the following properties: 0 ^ xn ^ 1,
xn(t) = 1, and xn(s) = 0 whenever | s - t \ ̂  l/2n. Let x* e E*, so that
by the Riesz-Kakutani theorem there is a regular, countably additive
measure mβ on (0,1] corresponding to x*. Then
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[p*(x*)]xn = x*[p(xn)] -

^ \\l/n)mAdt) ^2\\x*\\(l/n) ,

so that lim inf [p*(x*)]xn — 0. But for each n, (xf)xn = xn{t) = 1,

where xf corresponds to the point mass of weight 1 at the point t.

Hence || p*(x*) ~ xf \\ ̂  1/2, and x*<£p*(E*). Now if we let F be

the closed linear span of the union of p*(E*) and {x* se(0,l]

with s Φ t}9 then it is clear that xfgF, since lim inf xf(xn) = 0 for

each s Φ t and #f (xn) — 1 and since xf g p*(£ r*). By the Hahn-Banach

theorem there exists a nonzero #**e i£** such that ίc** is zero on î 7

and 1 on xf. Consequently for any x*eE*, we have

(x**Jx**)x* = [p**(x**)o2x**]x* = ίc**[p*(2ίc**oa;*)] = 0 ,

whence #** is nilpotent, and is in the radical of i?**. Furthermore,
for different t in (0, 1] the associated x** are linearly independent
from one another, by construction. Thus the radical of E** is infinite-
dimensional. Finally, to see that the method of proof of Theorem 3.12
in [8] is not applicable, we show that the linear span of (E*ΔE) is
dense in E*. To that end let e > 0 and take an arbitrary x*eE*,
with mx* the corresponding regular, countably additive measure on
(0,1]. There exists an n such that | mx* \ (0, 1/n] ^ β/2, where \mx*\
is the total variation measure of mΛ+. For each positive n, let yn be
defined by

Note that for t ^ 1/τι, \ yn(s)ds ~ 1. Then for any ze E with
Jo

I \z I i ^ 1 we have

J oI Jo Jo

^ 2n[\\z\\/2n]['n \ mx, | (dt) + || z/2 |[{l/*|mβ.[(dί) ^ β .
Jo Jo

Thus the linear span of (E*AE) is dense in £?*, which is what we
set out to prove.

EXAMPLE 6.2. Let E denote LJO, 1] with multiplication like
that described in Example 4.7: x,yeE implies that
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S t rt

y(s)ds + y(t)\ x(s)ds
0 JO

for almost all t in [0, 1], We first show that E is not bicommutative.
Sills [20] proved it by direct computation; our method utilizes results
of [8]. For each positive n, let en be defined on [0, 1] by the equations

en(t) =
n , 0 ^ t < 1/n)

0 , ^t^l)

Then || en \\ = 1, for each n. Let x* e £7*, and let ft^e LJΌ, 1] be the
function which corresponds to x* in the natural isometric isomorphism
between the two spaces [12, p. 289]. Then for x e E we have

x*(x4en) - x*(x) I = I [ hx*{t)\^(t)[ en(s)ds + en(t)[ x(s)ds~\dt
I Jo L Jo Jo J

- [1hAs)x(s)ds ^ Γ I hx*{b) I {l x(t) | [ l - Γβw(β)d8l}(iί

{l»(«) I [
§ ) I

as n gets large. Consequently (en)*=1 is a weak-(2£*) right identity for
E, in the sense that for each x*eE*, and each xeE, \imx*(xden) —

n

x*(x). Next we show that the linear span of (E*dE) is not dense in
E*. To this end, let x*eE*, and x,yeE, and let /veLw[0,l]
correspond to cc*. By Fubini's theorem we have

(a;

Consequently, for almost all te [0, 1],

S t ri

x(s)ds + x(s)hx*(s)d8 .
o Jί

ft

Now lim 1 x(s)ds = 0, and /&α* is essentially bounded on [0, 1], and«-»o Jo
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furthermore, I x(s)hx*(s)ds is continuous as a function of t in [0, 1],

so that lim hx*Δx{t) — 1 x(s)hx*(s)ds, which just says that hx*Jx is con-
t-» o Jo

tinuous at 0. On the other hand, let hQ be defined by

0, ί in (l/22*+1, l/22i, n = 0, 1, 2,

/ιo(ί) = J 1, t in (l/22 +2, 1/22-1], n = 0, 1, 2,

Then h0 is in LJO, 1], but \\h0 - hx*Jx\\ ^ 1/2 in the LJO, 1] norm,
for each x* e E* and each x e E. Thus the linear span of E*ΔE is
not dense in E*. By the Hahn-Banach theorem, there is a nonzero

y** e £7** which vanishes on E*AE. Since (βΛ)~=ί is a weak-(#*) right
identity for E, Lemma 3.8 of [8] tells us that i£** has a right identity
e**. Therefore τ/**z/e** = /̂** ^ 0. On the other hand, since T/**
vanishes on E*ΔE, y**Λx* — 0 for each x* e E*. Consequently, for any

χ * * e ^^^^ (ίc**Jτ/**)x* = x**(y**Jx*) = 0 for every x* e £/*, whereupon

χ * * j ^ * ^ __ Q̂  j n particular, e**Δy** — 0. Thus i?** is not commuta-
tive. Incidentally, since the right multiplication by 7/** is the zero
operator, 2/** is in the radical of E**. It is apparent that I is not
bicommutative, where I is the F algebra with associated sequence
{Lx[0, 1 - 1/nl zQ}~=2 defined in Example 4.7. For {(LΪ*[0, 1 - l/w],
4»)}n=2 is a n associated sequence for I** . Finally, we can easily show
that /** is not semi-simple. Indeed, if the h0 defined above is restricted
to the interval [0, 1/2], then the restriction is in /*, and is not in the
closure of the linear span of I*AI. Then, as above, the Hahn-Banach
theorem yields a nonzero z**el** which vanishes on 7*z/7. Conse-
quently z**JI** = 0, so z** is in the radical of /**.

We comment first that Example 6.2 shows that the Banach algebra
of absolutely continuous functions on [0, 1] is nonbicommutative, and
its bidual has a nonzero radical. Secondly, one cannot say that /**
is not semi-simple just because the members of a particular associated
sequence are nonsemi-simple.

The author would like to express his appreciation to Professors
Duane W. Bailey and Cassius Ionescu Tulcea, and especially to Professors
Charles E. Rickart and William G. Bade for their kind assistance in
its preparation.
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