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A mapping T from a Banach algebra X into itself shall
be called a centralizer of X if x(Ty) = (Tx)y for all x,yeX.
A bounded linear operator, T9 in X shall be called a right
[left] centralizer if T{xy) = (Tx)y[T(xy) = x(Ty)]. We show
that the space of centralizers forms a closed commutative
subalgebra of the bounded linear operators in X. The inter-
section of the space of right centralizers with the space of
left centralizers is precisely the algebra of centralizers.

We show that the algebra of right [left] centralizers of an
iϊ*-algebra is the T^*-algebra generated by the left [right]
multiplication operators and that the commutant of the algebra
of right [left] centralizers is the algebra of left [right] central-
izers. In order to do this, we construct a net, {ea}aβD in the
H*-algebra such that {eax}aeD and {xe*}aeD converge to x. We
show that the algebra of centralizers of a commutative H*-
algebra is the space of bounded functions on a discrete set. Char-
acterizations are given for compact and projection centralizers.

We also study commutative iϊ*-algebras in which the
irreducible self-ad joint idempotents all have the same norm.
We show that two such iί*-algebras are topologically and
algebraically equivalent if and only if they have the same
Hubert space dimension.

The notion of a centralizer was first introduced by Wendel [6] in
his work on noncommutative group algebras. Operators similar to
centralizers have been studied by Wang [5] in the context of a com-
mutative Banach algebra.

2 Preliminaries. This section is devoted to the necessary defini-
tions and notations. We also prove a very straightforward generalization
of several of the results found in Section 2 of [5].

DEFINITION 1. If X is a Banach algebra (complex), then a mapping
T from X into X will be called a centralizer of X if T satisfies the
identity x(Ty) = (Tx)y, and ^(X) will denote the set of all centralizers
of X.

DEFINITION 2. If X is Banach algebra and T is a bounded linear
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operator in X, then T will be called a right [left] centralizer of X if
T satisfies the identity T(xy) = (Tx)y [T(xy) = x(Ty)]. We will use
the symbol R(X)[L(X)] to denote the collection of all right [left]
centralizers of X, [6].

DEFINITION 3. A Banach algebra X is said to be without order
if Xy = (0) implies that y = 0 and yX — (0) implies that y = 0.

The symbol #(X) will be used to denote the collection of bounded
linear operators in X and the operator norm on B(X) will be denoted
b y II Ho.

THEOREM 2.1. If X is a Banach algebra which is without order,
then ^(X) is a closed commutative subalgebra of B(X) which contains
the identity operator.

Proof. We will first show that <έf (X) c B(X). If T e i f (X), x, yy

z, 6 X and a and b complex numbers, then

x[T(ay + bz)] = (Tx)(ay + bz) = xa(Ty) + xb(Tz) = x[aTy + bTz] .

Since X is without order, Γ(α?/ + bz) — aTy + bTz and thus T is linear.
Further, if y, z e X and {yn}™=1 is a sequence in X such that || yn — j/1| —> 0
and \\Tyn - s | |->0, then

| | x z - x ( T y ) || ^ || a? || | | « - Tyn\\ + \\ Tx\\ \ \ y n - y \ \

for each xeX. Therefore xz — x(Ty) and X without order implies
that z = ΓT/. We now apply the Closed Graph Theorem to conclude
that T is bounded and hence ^ ( X ) c B(X). It is easy to see that
R(X) n L(X) = ^ ( X ) and hence [(ΓS)a?]i/= Γ[(Sa?)y] = Γ[iS(a?i/)] =
(TS)(xy) which implies that TS e R(X) whenever T, S e ί f ( X ) . Simi-
larly, TSeL(X) and thus TSeR(X) n I/(X) = ^ ( X ) . It is obvious
that ^ ( X ) is a linear space which is closed under scalar multiplication
and hence ΐT(X) is a subalgebra of J5(X). If T, S e ί f ( X ) , then

α[(ΓS)!/] - s[T(Sy)] - (Γa?)(Sfy) = [S(Tx)]y = [ ( S Γ ) ^ = αί[(SΓ)»] .

Since X is without order, we conclude that (TS)y — (ST)y and that
^ ( X ) is commutative. The identity operator is clearly an element
of ^ ( X ) . If {TΛ}ΞU is a sequence in ^ ( X ) which is Cauchy with
respect to the operator norm, then since ^ ( I ) c B ( I ) , there exists
Te B(X) such that || Tn - T ||0 -> 0. If α?, 2/ e X, then

|| (Tnx)y - (Tx)y \\

^2\\x\\\\y\\\\Tn-T\\0
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which converges to zero with n. Hence x(Ty) = (Tx)y and Te
Therefore ^{X) is closed with respect to the operator norm and the
proof of the theorem is complete.

3* Centralizers of H*-algebras* Throughout this section, H will
denote an H*-algebra. We will study the spaces R(H) and L(H) in
considerable detail and note that it is not hard to show that R(H) and
L(H) are C*-algebras (hence 5*-algebras) each of which contains the
identity operator.

THEOREM 3.1. Each of R(H) and L(H) is a W*-algebra.

Proof. Since R(H) is a self-ad joint subalgebra of B(H), we must
only show that it is weak operator closed. To do this, let AeB(H)
and let {Aa}aβD be a net in R(H) such that {Aa}aeD converges to A in
the strong operator topology. Then, for x,yeH, we have

|| A(xy) - (Ax)y || £ \\A(xy) - Aa(xy) || + || (Aax)y - (Ax)y \\

^ || A(xy) - Aa(xy) || + || Aax - Ax \\ \\y ||

which converges to zero with a. Hence A(xy) = (Ax)y, A e R(H) and
R(H) is strong operator closed. Since R{H) is a self-adjoint subalgebra
of B(H), the strong and weak operator closures of R(H) coincide,
[2, 448], Hence R(H) is weak operator closed and thus is a W*-algebra.
The proof for L(H) is similar and will be omitted.

THEOREM 3.2. There is a net {ea}aejD contained in H with the
property that {eax}aeD and {xe*}aeD converge to x for every x e H.

Proof. Let {ea} be a maximal family of nonzero mutually orthogonal
irreducible self-adjoint idempotents of H and let D be the set of all
finite sets of the indices α, directed by inclusion. T o α = (au a2, , an),
let ea = eaχ + ea2 + + ea% correspond. The net {ea}aeD clearly satisfies
the requirements of the theorem.

The author wishes to express his appreciation to the referee for
the above proof.

COROLLARY 3.3. The W*-algebra generated by the left [right]
multiplication operators is R(H) [L(H)].

Proof. For each x e H, define the left multiplication operator Lx

in H by Lx{y) = xy and let Sf{H) = {Lx: x e H}. Let {ea}aeD be the
net constructed in Theorem 3.2. For A e R(H), LAea(x) = (Aea)x = A(eax)
and since {eax}aeD converges to x, we have that LΛea converges to A
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in the strong operator topology. Thus j2f(H) is strong operator dense
in R(H) and since Jίf(H) is a self-ad joint subalgebra of B(H), it follows
that the T7*-algebra generated by £f(H) is R(H). The proof for
right multiplication operators is analogous and will be omitted.

For S an arbitrary subset of B(H), denote by W(S) the smallest
TF*-algebra containing S and denote by S' the set of all operators in B(H)
which commute with all the operators in S U £* where S* = {A*: i e S } .

THEOREM 3.4. R(H)' = L(H) and L(H)' = R{H).

Proof. It is known, see [2, 445], that if S is any set in B(H),
then S' = W(Sy. This fact, together with Corollary 3.3, implies that
R(HY = W{£f(H))' = jSf(H)'. Now, for A e R{H)f, we have that
A e £f(H)' and hence ALX = LXA for all a? e H. Thus A(&s/) = A(LX?/) =
Lx(Ay) = x(Ay), Ae L(H) and R{H)'c:L{H). The other containment
is trivial and thus L(H) = J2(fl")\ Also we have that # ( # ) " = L(H)'
and since i2(iϊ) is a l^r*-algebra containing the identity, L(H)' =
R(H), [2, 448].

REMARK 1. Since fx(A) — (Ax, x) is a positive linear functional
on R(H) [L(H)] for each xeH, it is easily seen that R(H) [L(H)] is
a symmetric and reduced (hence semi-simple) algebra.

REMARK 2. Since each of R(H) and L(H) is a T7*-algebra with
the identity operator as unit, then ^(H) = i2(£Γ) Π L(H) has the same
properties.

REMARK 3. Note that ^(H) is also symmetric, reduced and semi-
simple since it is a closed commutative subalgebra of B(H) containing
I and thus is isometric *-algebra isomorphic to the bounded continuous
functions on its compact regular maximal ideal space (e.g., see [2, 232]).

4* Centralίzers of commutative if*-algebras* We will now
focus our attention on commutative H*-algebras and first give a char-
acterization of the centralizers of a commutative H* -algebra as the
set of all bounded (continuous) complex-valued functions on a discrete
space. In this section H will be a commutative if*-algebra.

Let E — {ej\\ ea \\ : ea is an irreducible self-ad joint idempotent}.
Note that each minimal ideal of H is the one-dimensional ideal generated
by an ea. We can now identify E with %JlH (regular maximal ideal
space of H) and if we give E the discrete topology, then E and Wlπ

are also topologically equivalent. Note also that E is a complete
orthonormal basis for H.
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DEFINITION 4. A function / from WlE into the complex numbers will
be called a multiplier of H provided fHa H, where H — {x : x e H),
x is the Gelfand transform of x and the set of all multipliers of H
will be denoted by M(H).

REMARK 4. It is shown in [5] that M(H) c C{WlH), the bounded
continuous complex-valued functions on SJî , and there is a natural
mapping from ^{H) onto M(H) which is a norm-decreasing algebra
isomorphism. We will often refer to this mapping as the Wang mapping.

THEOREM 4.1. There exists a *-algebra isomorphism which is
an isometry from ^(H) onto C(E), the set of all bounded complex-
valued functions on the discrete space E, where E is as above.

Proof. By our previous remark, there is a mapping from
onto M(H), a subset of C(W,H). By identifying %JlH with E, we have
M(H) as a subset of C(E). The correspondence between ίSJls and E
gives the Gelfand transform the form x(e) = (x, β)/\\ea\\, where e =
ej\\ea\\. Recall that the defining equation for the Wang mapping, Φ,

is Φ(A)(h)x(h) = Ax(h), for all xeH and he^SlH. Since EcH, we

have t h a t Φ(A)(e) = (Ae, e) for A e ctf(H) and e e E. If g e C(E) and

xeH, then z — ^ E (x, e)g(e)e is an element of H. If xeH, then

g(e)x(e) = g(e)(x,e)/\\ eα || and z(e) = (x, e)g(e)/\\ ea\\. Therefore g(e)x(e) =

z(e) and thus gίϊczH, so that geM(H). The mapping clearly takes
A* into the conjugate of the image of A and thus the only thing
remaining is to prove that the Wang mapping is an isometry. For
A e <έ?(H), we have that (Ae, f) = (A[\\ ea \\ ee], /) = 0 for e, fe E and
e Φ f and

{Ax, e) = (A[Σ (α,/)/], β) - (x, e)(Ae, e) .

Therefore

|| A x ||2 - Σ I (Ax, e) |2 = Σ I (* , β) | 2 1 (Ae, e) |2 g || Φ(A) \\l \\x\\*

and hence || A ||0 ^ || (?(A) !!«,, so that Φ is an isometry. This completes
the proof of the theorem.

We will now use the mapping of Theorem 4.1 to characterize the
compact operators in ^{H). The proof will use the following lemma
which gives a necessary and sufficient condition for a projection
operator to be in

LEMMA 4.2. If P is a projection operator in H, then Pe
if and only if H = IΊ 0 I2, where Iλ is an ideal and I2 is a subalgebra
of H with P' = Pτ (the projection onto I2) and IJ2 = (0).



126 C. N. KELLOGG

Proof. First, assume that Pe <gf (ff), let I2 = P(H), and let I, be
the orthogonal complement of I2 in H. By the definition of It and J2,
H = ii φ I 2. If x G 7X and j/ e if, then P(α;τ/) = 0, since P(xy) = P(x)y
and x is in the orthogonal complement of the range of P. Hence
xy G li and I± is an ideal of H. Furthermore, if x,ye I2, then Px = x
and P(xy) = #2/ which implies that #2/ G I2 and hence J2 is a subalgebra
of H. lΐ xe Iγ and y e I2, then xy — x(Py) — P(xy) = 0 since a? e JΊ
(an ideal). Thus IJ2 = (0). Conversely, if x,ye H, then x — x1

J

Γ x2

and y — yx + y2 where a?!, y1 e I± and a?2, y2 e I2. Since P — P / 2, Pa; =
P(^ ! + x2) = x2 and Py = $/2

 a n ( i 2̂2/1 = 0 = y2xl9 Hence x(Py) =
(a?i + £2)τ/2 = a?22/2, (Px)y = a?2(2/i + 2/2) = 2̂2/2 a n ( i ^(P2/) = (Px)y Therefore
we have Pec^(H), concluding the proof.

We now introduce some notation to be used in the following theorem.
By I 0(iϊ), we will denote the set of all compact operators in H. We
will denote by C0(E) and CJJS), respectively, the subspaces of C(E)
which are the functions with compact support and the functions which
vanish at 00. Let &JJ3.) = Φ~\CJβ)) and ^{H) = φ-\C0(E)), where
Φ is the Wang mapping.

THEOREM 4.3. The space of all compact centralizers in H is
precisely %

Proof. If A 6 <Sfo(#), then Φ(A) e C0(E) and since E is discrete, we
have that Φ(A) is finitely nonzero on E. Let {β^Li be the set of points
e in E such that Φ(A)(e) Φ 0. Then, for x e H, Ax = J^E {Ax, e)e =
Σ ^ (%9 e)(Ae, e)e (see for example the proof of Theorem 4.1) Hence
Ax = Σ?=i (χ> ei)(Aeu eύei a n ^ therefore A ( f f ) c χ j = 1 0 Ni9 where ei e Ni9

a minimal ideal of H. Since each Nt is one-dimensional, we have that
the range of A is finite dimensional and hence AeI0(H). Therefore,
since each of IQ(H) and C^{H) is closed relative to the operator norm,
we have that ^ΛΉ.) c I0(H) Π %?(H). Let BeI0(H) Π ̂ ( H ) , and we
can assume that B — J5*. Thus B is a bounded self-adjoint operator
which belongs to the ΫF*-algebra <^{H)y and since Ie ^(H), we have
that P(a) e ^(H) for all a real, where P(a) is the spectral function
of J5, [2, 448]. Further, BeIQ(H) implies that B = ^=1akPk where
P/c = P(αfc), each Pfc is a projection onto a finite dimensional subspace,
and ak -> 0 as k —> 00, [2, 250], Hence B = Σ£U α^Pfe where Pfc e ^(H).
We will now show that the function on E, which maps e to (Pke, e),
is finitely nonzero for each k. Let ee E such that Pke Φ 0. By
Lemma 4.2, we know that H = Jx φ I 2 where Pfc = P J a , I ^ = (0), ̂  is
an ideal and I2 is a subalgebra. Since eeEaH, there exists ^ 6 ^ ,
e2 G J2 and an irreducible self-ad joint idempotent, ea such that e =
e, + e2 = ββ/|| ββ | |. Therefore, ex + e2 = || eβ ||ββ = || ββ IKβ^ + β2e2). It
follows that | | e β | | e i and | | e α | | e 2 are self-adjoint idempotents and
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(II ea || ejfll ea \\ e2) = 0. However, ea = || ea \\ e1 + \\ ea \\ e2 and since ea is
irreducible, || ea \\ e1 = 0 or || ea \\ e2 — 0 and therefore e1 = 0 or β2 — 0.
It was assumed that Pfce =£ 0 and P^β = β2, so that β: = 0. Therefore
{e e E: Pfce =£ 0} is a subset of Pk(H), which is finite dimensional. Thus
Pke is finitely nonzero and hence Φ(Pk){e) — (Pfcβ, e) is finitely nonzero.
This gives us that Pk e ^0(H) for each k and hence B is an element
of the operator norm closure of ^0(H) which is

5* Commutative H*-algebras* The study of commutative H*-
algebras is best motivated by L2(G), the convolution algebra of square-
integrable functions on the compact abelian topological group G. It
seems natural to ask in what sense does L2(G) determine the group G.
For example, it is known, [4, 92], that if there is an isomorphism from
L\G) onto L\H)9 G and H compact abelian topological groups, with
norm less then or equal to one, then G and H are isomorphic. The
space L2(G) is not as closely related to the group structure in that it
is possible to have nonisomorphic groups whose spares of square-inte-
grable functions are isometric and *-algebra isomorphic. For example,
the correspondence

(a, b, c, d) -

is an isometric *-algebra isomorphism between the respective spaces of
square-integrable functions of the Klein 4-group and the cyclic group
on four elements. We will show that U{G) and U(H) are isometric
*-algebra isomorphic if and only if there is a one-to-one correspondence
between G and H, the respective character groups of G and H.

THEOREM 5.1. Let H^i = 1, 2) be commutative H*-algebras such
that all the irreducible self-adjoint idempotents of H{ have norm k{.
There is a mapping from H± onto H2 which is a *-algebra isomorphism
and a topological mapping if and only if Hι and H2 have the same
dimension, as Hilbert spaces.

Proof. Denote by E1 and E2 the collections of irreducible self-ad joint
idempotents of iϋ^ and H2. Suppose that Ex and E2 are in one-to-one
correspondence and for ea e Eu denote the corresponding member of E2

by fa. We may now assume that E1 and E2 are indexed by the same
set. For x e Hlf we have that x = Σα (#, ea)ejkl, where kλ = \\ ea \\ for
all ea e E,. Define θ on H, by θ(x) = ^a(x, ea)fjk\ and it is clear that
θ is linear and into H2. Notice that (xy, ea) — (x[Σιb (v, e^ejkl]), ea) =
(V, ea)(xf ea)/kl for x.ye^ and ea e Ex. Hence

θ(x)θ(y) = [ Σ (x, ea)fa/ki\\Σ (V, eb)fb/k{\ = Σ(», ea)(y, ea)fjk{ - θ(xy)
La J L b Λ a
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and θ is a homomorphism. It follows easily that θ is onto, preserves
involution and satisfies || θ(x) \\ — (kJk^Wx ||. We have constructed the
desired mapping.

For the converse, suppose the mapping θ is given. Since θ and
θ~γ are isomorphisms, it readily follows that θ(ea) is an irreducible
self-adjoint idempotent for H2 and thus is some member of Ei9 say faΦ

Hence the restriction of θ to Ex is a one-to-one mapping E1 into E2.
Upon applying a dual argument to θ"1; we can conclude that the
restriction of θ to Eλ is the desired one-to-one correspondence.

REMARK. In the case that kλ — k2, the proof given above shows
that θ is an isometry.

THEOREM 5.2. Let H be a commutative H*-algebra in which all
the irreducible self-adjoint idempotents have norm k. There is a
compact abelian topological group G and a mapping θ from H onto
L2(G) which is a topological *-algebra isomorphism.

Proof. Let Ed denote E (the set of irreducible self-adjoint idem-
potents of H) endowed with the discrete topology and any abelian
group structure. It is always possible to introduce on E an abelian
group structure by embedding E in the direct sum (weak direct product)
of the integers modulo two, where the index set ranges over E. Let
G be the group of continuous characters on Ed. Then G is a compact
abelian topological group whose character group is Ed and L\G) is a
commutative H* -algebra with regular maximal ideal space Ed. The
conclusion now follows easily from Theorem 5.1.

REMARK. If k — 1, then the mapping is also an isometry.

THEOREM 5.3. If G and H are compact abelian topological groups^
then h\G) and U(H) are isometric *-algebra isomorphic if and only
if there is a one-to-one correspondence between G and H, the respective
character groups of G and H.

Proof. This theorem can be obtained from Theorem 5.1 by taking
L\G) = Hί9 L\H) = H2)G = E19 H = E2 and k, = k2 = 1.

The author wishes to express his gratitude to Professor H. S.
Collins for his many helpful suggestions.
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