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In the theory of proximity spaces of Efremovic, (The
geometry of proximity, Mat, Sbornic, N.S. 31 (73), (1952),
189-200,) the result:

A set X with a binary relation ‘“ A close to B’ is a

proximity space if and only if there exists a compact Haus-
dorff space Y in which X can be imbedded so that A is close
to B in X if and only if A meets B in Y (A denotes the
closure of the set A) (Y.M. Smirnov, on proximity spaces,
Mat. Sbornic, N.S. 31 (73), (1952), 543-574.)
Raises the question: Can we display a set of axioms for a
binary relation ¢ on the power set of a set X so that the
system (X, d) satisfies these axioms if and only if there is a
topological space Y in which X can be imbedded so that

a.n A6B in X if and only if AN B+ ¢ in Y.

In (M.W, Lodato, On topologically induced generalized pro-
ximity relations, Proc. Amer. Math, Sec. vol. 15, no, 3, June
1964, pp. 417-422), it is shown that an affirmative answer can
be given if Y is T, and if X is regularly dense in Y. The
clusters of S, Leader, On clusters in proximity spaces, Fund.
Math., 47 (1959), 205-213, were used in (M.W. Lodato, On
topologically induced generalized proximity relations, Proc.
Amer. Math, Soc. vol. 15, no. 3, June 1964, pp. 417-422), The
present paper generalized this notion and thus relaxes the condi-
tion that X be regularly dense in Y, We actually characterize
every system (X, ) for which there exists a mapping f (not nec-
essarily one-to-one) of X inte a Hausdorff space Y such that

1.2) AjBin Xif and only if AfnfB+¢ in Y.

2. P,Spaces. Recall from [3] that a symmetric generalized
proximity space or P,-space is a system (X, 0) where ¢ is a binary
operation on the power set of X satisfying

(P.1) Aoé(B U C) implies that either A6B or AdC

(P.2) AJB implies that A = ¢ and B # ¢

(P.3) AN B=# ¢ implies A6B

(P.4) AoB and bdC for all points b in B imply that AdéC

(P.5) AdB implies BoA

We read the symbols ‘“ A6B’ as ‘“ A is close to B’’; and we say
that ‘“ A is remote from B’’-in symbols, ‘‘ AgB ’-if A is not close to B.
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(2.1) The following facts are evident: (1) If AoB, AcC, and
Bc D then CoD. (2) Define

A’ = {rxe X :x0A}

then in a P,-space (4%0(B% if and only if AdB.

3, Bunches, Let X be a P,-space. A bunch over X is a class
o of subsets of X satisfying:

(B.1) AdB for all A, Beo

(B.2) AU Beo implies that Aco or Beo

(B.3) Xeo

(B.4) If Aco and adB for all a in A then Beo.

(8.1) The following facts are easily established:

(1) Every cluster is a bunch.

(2) For z, a point in a P,-space X, the class o, of all subsets A
of X such that x0A is a bunch over X.

(3) If a point © of X belongs to a bunch o, then ¢ is identical
to the class o, of all subsets A of X such that x6A.

(4) Any bunch o from a P,-space (X, 0) is closed under the opera-
tion of supersets: If ¢ is a bunch from X, Aco and AZ B, then
Beo.

4. Extensions characterized by bunches.

(4.1) THEOREM. Given a set X and some binary relation 6 on
the power set of X, the following are equivalent:

(I) There exists a T, topological space Y and a mapping f of
X into Y with fo =Y and such that (1.2) holds.

(A1) ¢ is a P,-relation satisfying the additional axiom:

(P.7) There exists a family X of bunches from X such that

(i) AdB implies that there exists a o€ such that A, Beo,
and

(iiy ¢f o and ¢ are in X and either Aco or Beo' for all sub-
sets A and B of X such that AU B = X, then ¢ = ¢'.

Proof. Suppose that (I) holds and define é by (1.2). (P. 1), (P.2),
(P.3), and (P.5) are trivial consequences of the properties of closure.
For (P. 4) suppose that A6B and b3C for all b in B, Then fANfB+#¢
fon fC = ¢ for all b in B, which since Y is T,, implies that fbe FC
for all b in B. Thus fBc fC or fBC fC so that fAN fC # ¢ show-
ing that A6C. For (P.T), define o, = {A S X:yec fA} for each point
ye Y, Clearly, g, is a bunch.

Now let ¥ = {0,: ye Y} and we will show that ¥ satisfies (i) and
(ii).
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(i) If AGB, then fA meets fB in Y so we can take a point v in
FAN fB and o, will be a bunch containing both 4 and B.

(ii) Suppose ¢, # 0,. Then z#* y in Y so that, using the T,
property, there exist disjoint open sets U and V, containing x and y
respectfully., Thus, y¢ Y — V=Y —-Vand ¢ Y—-U=Y— U so
that y¢fX — Vand z¢ fX — U, Hence, A= (fX— V)¢o, and
B=jffX - U)¢o, and

SAUB) = (fX - V)U(fX - U) =fX—-(VnU)=rX

so that A U B = X.

For the converse suppose that (II) holds. Given x in X the class 0,—=
{A = X:%x0A} is a bunch from X, by (3.1), (2.). Thus for any subset
A of X, let .7 be the set of all bunches ¢, determined by the points «
in A and let .97 be the set of all bunches in 3 which have A as a
number. Define the correspondence, f(x) = o, between X and 27 =fX
by identifying each x in X with the bunch o, determined by it. Let
Y = ¥, the family of bunches satisfying (i) and (ii).

We first show that fX < 2. Consider any ¢, in fX. Then since
by (P.3) xdx, by (i) there exists a ¢ in Y such that xeo. But by
3.1), 3.), 0, =0, hence 0, € Y and fXZ Y.

By (P.3), Aco, for each a in 4 and so .7 < .o .

A subset A of X absorbs a subset @ of Y if and only if A belongs
to every bunch in @, i.e., if and only if .o contains @. For any sub-
set @ of Y we define the closure, ¢l (@), of @ by

(4.2) o¢ cl(@) if and only if every subset E of X which absorbs
@ is in 0.

We next show that

(4.3) cl(¥) = 7.

For if o¢cl(.%7) then since A absorbs .o, A€o so that oe .o,
On the other hand, if 0¢.%” then Aco. Now let P be in every o,
in .7, i.e., Pda for every @ in A and hence A< P°. Thus, by (B.4),
Pe o so that e cl(7).

We now show that the Kuratowski closure axioms are satisfied by
the closure defined by (4.2).

(K.1) @cel(@): This is trivial since if K absorbs @ then Feo
for every o€ @,

(K.2) cl(¢) = ¢: Suppose occl(¢). Since it is vacuously true
that every subset of X absorbs ¢, we then have that every subset of
X is in o. In particular, ¢ and X are in ¢. Thus, ¢6X, by (B.1),
contradicting (P. 2).
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(K. 8) cl(cl(®@) < cl(®): Suppose o< cl(cl(@)) and that E absorbs
@, By (4.2) K absorbing @ implies that E absorbs ¢l(?). Hence Ecoc
showing that o< cl(@).

K.4) cl(@U@) = cl(®)Ucl(?'): Suppose that cecl(@U@) and
that A absorbs @ and A’ absorbs @. Then by (3.1), (4.), AU A’ absorbs
QU so that Ay A'eo. But by (B. 2) this means that either Aec o or
A'eo, i.e., ogecl(@) or oecl(?). On the other hand, o€ cl(@) U cl(P)
implies that either o€ cl(®@) or oecl(?). Now if E absorbs @ U @,
then E absorbs @ and also absorbs @’. Hence, E'co showing that
ocecl(@ U @) and (K. 4) holds.

Thus, (4.2) defines a topology on Y.

To show that fX is dense in Y, we just note that by (4.3),
(2= =17Y.

To show that the topology is 7, we must show that if ¢ and ¢’
are in Y such that ¢ = ¢/, then there exist subsets @ and @ of Y
such that o ¢ cl(@), 0’ ¢ cl(@’) and cl(@)Ucl(@’) = Y.

So suppose ¢ # ¢’, then by (ii) there exist subsets 4 and B of X
such that A¢ o, B€o’and AUB = X. Thus, .>7 and <% are subsets
of Y such that o¢.o7 and ¢’ ¢ &7, (since for instance A absorbs .57
but A¢o)and & UZ = v UZ =2 = Y.

To finish the proof we need only show that (1.2) holds: AoB in X
if and only if .o meets =7 in Y. If AoB there exists, by (i) a
e Y to which both A and B belong. Thus, by definition of .27, we
have 0€ .97 N.<2. On the other hand, if c€.% N2 then A and B
are in ¢ so that by (B.1), AdB.

The proof is now complete.

5. Symmetric P,-Spaces. A P,-Spaces (X, 6) in which o satisfies
the additional axiom.,

(5.1) 20y implies © = y
is called a symmetric P-space (see [4]). The following theorem follows
directly from (B.1) and (5.1).

(56.2) THEOREM. Fwvery bunch ¢ from a symmetric P-space
(X, 0) possesses at most one point.

(6.3) THEOREM. Given a set X and a binary relation, o, on the
power set of X, the following are equivalent:

(I') There exists a T, topological space Y im which X can be
tmbedded so that (1.1) holds.

II") 0 is a symmetric P,-relation satisfying (P.7).
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Proof. The demonstration is very similar to that of theorem (4.1).
To see that (') implies (5.1), note that TN ¥ #* ¢ implies that
cNy+#¢, or x=1y,

Finally we note that, because of (5.2), the correspondence between
X and 2 induced by the identification of x with the bunch o, deter-
mined by it is one-to-one.
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