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Yon Neumann and Zaanen have studied measure theoretic
properties of collections of sets which satisfy weaker axioms
than those of a ring. In this paper it is shown that the von
Neumann axioms for a half ring of sets and the Zaanen
axioms for a semi-ring of sets can be weakened without loss
of their measure theoretic significance.

An investigation of the geometrical structure of a col-
lection & of convex sets which satisfy either von Neumann's,
Zaanen's or our weaker axioms is conducted. Principally we
extend some earlier results by showing that under rather mild
restrictions, sets of such collections are polyhedral. After
imposing the additional condition that &\{φ) be a neighborhood
base for a linear topology, we prove that if & is a semi-ring
in the earlier sense then the topology induced by ^ ? is a so
called weak topology and conversely every weak topology has
such a neighborhood base. Finally we characterize subspaces
of the Banach space (c0) as the only Banach spaces which have
a neighborhood base of convex sets which together with the
null set form a half ring (in the weaker sense).

Our set theoretic notations, definitions and conventions are standard.
The reader might observe, however, that the word countable as used
in this paper, refers to finite sets (including the null set) as well as to
those infinite sets with the cardinality of the integers. In § 1 through
§ 4 our terminology, for the most part, adheres with that established in
[1]. The scalar field of all linear spaces X considered will be assumed
to be the real numbers. If x,yeX, then the expression (x,y),(x, y]
or [x, y] will denote either the open, half open or closed line segment
whose endpoints are x and y. All linear topological spaces X considered
will be assumed to satisfy the Hausdorff separation axiom. If Ac X,
then the symbols cl (A) and int (A) will denote the topological closure
and interior of A respectively. A subset A will be called nondegenerate
if int (A) Φ 0 . The notation (c0) will be used to designate the Banach
space of all real valued sequences x — (x19 x2, •••,) which converge to
zero and are normed by | | g | | = sup; |aj< |. If X is a linear topological
space and Γ is its set of continuous linear functionals (i.e., the topolo-
gical) dual of X) then the weak topology of X will refer to the coarsest
linear topology in which every member of Γ is continuous. It should
be recalled that the collection of all sets of the form
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ή {x e X | \Mx)\ 5Sε}

where f{e Γ and ε > 0 is an equivalent neighborhood base at the origin
for the weak topology. The undefined measure theoretic terms which
appear in § 5 agree with [2].

2* Demi-spaces, polyhedra and polytopes* In a conversation
with the author, Professor P. C. Hammer defined a convex subset of
a linear space to be a demi-space if its complement is also convex.
Algebraically open and closed half spaces are examples of demi-spaces.
The main properties of demi-spaces which we will be using can all be
derived from Theorem 2.1 below and its corollary. The theorem is
due to Kakutani and a proof appears in [3, Th. 1.8],

THEOREM 2.1. (Kakutani). If P, Q are disjoint convex subsets
of a linear space, then there exists a demi-space D such that P c ΰ
and QdX\D. i.e., The demi-space D strictly separates P from Q.

COROLLARY 2.2. A subset D of a linear space X is a demi-
space if and only if it is a maximal convex set which excludes
some convex set.

If one defines a semi-space [3] as a maximal convex set which
excludes a point, then Corollary 2.2 implies that these sets are also
examples of demi-spaces.

In [7], Weyl defines a convex polyhedron as a subset of a linear
space which can be realized as the intersection of finitely many half
spaces. Here we use a more general definition and define a convex
polyhedron as a subset of a linear space which can be expressed as
the intersection of a finite number of demi-spaces.

In [4] we generalized WeyΓs definition of a convex polyhedron to
embrace certain bounded convex sets in infinite dimensional spaces.
We showed that this definition was well motivated and shared many of
the properties of the former. In fact the only bounded nondegenerate
convex polytopes which exist in finite dimensional normed linear spaces
were seen to be polyhedra. The definition given there is as follows:
If {Da \ae A} is a collection of algebraically closed half space in a
linear space X such that

( i) P= Π{Da\aeA).
(ii) For each xe X there exists au a2, - - ,ane A having the

property that xe []{Da\ae A, a^aua2, , an}, then P is a convex
polytope.

For the purpose of this paper we will broaden this definition by
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allowing the collection {Da | a e A} to be a collection of demi-spaces.
Every collection of demi-spaces which satisfies (i) and (ii) will be
called a representative collection of demi-spaces for P. Theorem 2.3
links our definition of a convex polytope to that given in [4] and
enables us to more fully utilize the results of [4].

THEOREM 2.3. If P is a nondegenerated convex polytope in a
linear topological space X and if {Da | a e A} is a representative
collection of demi-spaces for P, then cl (P) is a convex polytope in
the sense of [4] as well as in our sense and {cl(Da)} is a repre-
sentative class of half spaces for cl (P).

Proof. Since P has a nonvoid interior so does each demi-space Da.
Thus it is well know [1] that there is a continuous linear functional
fa and a real number ca such that

( a ) xeDa implies fa(x) ^ ca

(b) x e Da implies fa(x) ^ ca.
Let Ea = {xeX\fa(x) ^ ca). Then (a) implies P c f | « ^ , so that
cl(P) c ΠaEa. Suppose p e ΠaEa and let y e int(P). Then fa(y) < ca

for each a e A. Thus fa(z) < ca for each z in the open line segment
(p,y). But then (b) implies ze f\aDa = P so that Pecl(P). Therefore
cl(P) — f]aEa. Finally since Π«A* *s a convex polytope and since
EaZ)Da, it is clear that {Ea\aeA} satisfies (ii) above.

If we define a face of a convex subset of a linear topological
space to be a maximal convex subset of its boundary, then Theorem
2.3 and the results of [4] imply:

COROLLARY 2.4. A nondegenerate convex polytope in a linear
topological space has a countable number of faces if and only if it
has a countable representative class of demi-spaces.

3* Half rings, polyhedra and poly topes. A collection & of
sets along with the empty set will be called a half ring if

( i) For each RlyR2e& the intersection R1 Π R2 e &.
(ii) For each R,Rre& such that RaRf there exists a counta-

ble chain {Rt} c & such that R = Rλ c R2 c c U A = R' and
Ri\Ri-i€& for each i > 1.

If the ascending chain of (ii) can always be chosen to be finite then
& will be called a half ring which satisfies the finite chain condition.
The latter type half ring was defined by von Neumann [6] who investi-
gated their measure theoretic importance. Note that (ii) implies:

(iii) For each pair R,R'e& such that RaR', there exists a
countable sequence {P<} of pairwise disjoint members of & such that
R = P1 and R' = U Λ

A collection of sets which satisfy (i) and (iii) will be called a



140 P. H. MASERICK

semi-ring. If a finite sequence can always be found for each such
pair R and Rr then <% will be called a semi-ring which satisfies the
finite sequence condition. Zaanen [8] investigated the measure theo-
retic properties of the latter type semi-ring. In § 5 we will extend
these results to an arbitrary semi-ring. In this section and the next,
however, we will extend the research presented in [5] by investigating
the geometric properties of semi-rings and half rings of convex sets.

THEOREM 3.1. If & is a collection of demi-spaces ivhich is
closed under complementation, then the collection & of all convex
polytopes {polyhedra) which has a countable (finite) subset of £$ as
a representative class is a half ring (half ring ivhich satisfies the
finite chain condition). If moreover & is translation invariant,
so is &.

Proof. We will prove the assertion only for the case where &
is a collection of convex polytopes and leave the other to the reader.
Since (i) of the half ring definition is obviously satisfied by & we
need only show that & satisfies (ii). Suppose R,R'e& such that
RaR', and let {D^ be a countable subcollection of 3ί which is a
representative class of demi-spaces for R. For each integer k let

Clearly Rk e & for each integer k and from (ii) of the definition of a
convex polytope it follows that \JkRk — Rf. Moreover since

we see that this set is a member of & for each k > 1.
If we define a collection of subsets of space X to be entire

whenever it contains X as one of its members, then Theorems 3.2
and 3.3 are partial converses to Theorem 3.1.

THEOREM 3.2. // & is an entire half ring of convex sets, then
each R e & is a convex polytope which has a countable representative
class of demi-spaces.

Proof. Let R be an arbitrary member of & and {JBJ be the
countable chain from R to X referred to in (ii) of the definition of a
half ring. Then for each integer i there is a demi-space DL which
contains R{ but strictly separates Ri from J?ί+I\i2i (Theorem 2.1).
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Clearly R — Π A and if x g R then there exists j such that x e Rj+1\Rj.
Thus x G Π {A I i ^ i + 1} so that j? is seen to be a convex polytope
with {Di} as its representative class of demi-spaces.

It is not true that every member of an entire semi-ring of convex
sets is a convex polytope. However we may state:

THEOREM 3.3. If & is an entire semi-ring of convex sets which
satisfies the finite sequence condition (and hence if & is an entire
half ring which satisfies the finite chain condition) then each R e &
is a convex polyhedron.

Proof. If R is an arbitrary member of & and {Ri \ i = 1, 2, , k}
is the partition of X assured by (iii) of the definition, then from
Theorem 2.1, for each integer there exists a demi-space D{ which
contains R and strictly separates R from R{. It then follows that

R = n A.

COROLLARY 3.4. // & is an entire semi-ring of convex sets,
then each R e & can he expressed as the intersection of a countable
number of demi-spaces.

4* Half rings and linear topologies* In the first part of this
section we characterize the weak topology as the only linear topology
which has a half ring <% (of convex polyhedra), which satisfies the
finite chain condition such that ^?\{0} is a neighborhood base. In
the latter part of the section, subspaces of the Banach space (c0) are
similarly characterized in terms of half rings of convex poly topes.
As a preliminary result we begin with:

THEOREM 4.1. If ^ is a neighborhood base of convex polyhedra
for a locally convex topology, then that topology is equivalent to its
weak topology.

Proof. By definition the given topology is at least as strong as
the weak topology. Let Pe^ be an arbitrary neighborhood of the
origin. To see that the topologies are equivalent we need only prove
the existence of a weak neighborhood of the origin which is contained
in P. For this, let {Di \ i = 1, 2, , k] be a finite collection of demi-
spaces whose intersection is P. Since each Di has a nonvoid interior,
as is well known [1], it can be separated from its convex complement
by a continuous linear functional. Thus for each integer i there is a
continuous linear functional ft such that X\D{ c {x e X \ f^x) Ξ> c{}, so
that P = ΓliDiZ) f\i{x e X\fi(x) < c%) and the set on the right side of
the contains symbol is the desired neighborhood.
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THEOREM 4.2. If & is a semi-ring of convex sets which satis-
fies the finite sequence condition such that &\{0} is a neighborhood
base for a linear topology on a linear space X, then the subcollection
&0 of all convex polyhedra in & is a coarser semi-ring which
satisfies the finite sequence condition, and such that &o\{0} is an
equivalent neighborhood base. If, moreover, & is a half ring which
satisfies the finite chain condition then &Q is also a half ring which
satisfies the finite chain condition. In either event, however, the
given topology is a weak topology.

Proof. The last assertion is an immediate censequence of the
first and Theorem 4.1. To establish the first assertion let Rz& be
an arbitrary neighborhood of pe X. Since X is a linear topological
space it is regular. Thus there exists Rλe & such that pe int(Rλ)
and cl(i?!)c int (R). To see that R1 is a convex polyhedron let
{R. I i — l ? 2, , k] be the finite sequence of R guaranteed by (iii) of
the definition of a semi-ring. From Theorem 2.1, for each integer
i > 1, there exists a demi-space Dt such that DiZ)R1 and X\DiZDRi.
If x ζ R± then the half open line segment (p, x] contains a point y
(possibly x itself) such that y e R\Rlm Thus yeR{ for some integer
i ^ 2 so that y^O{. Since peD{ and Di is convex it follows that
x$Di so that Rλ = Π ; A Thus if Re & is a neighborhood of peX
there is a convex polyhedron in & which is contained in R and is
also a neighborhood of the point p. Therefore the collection ^ ? 0 of
all nondegenerate convex polyhedra in & is an equivalent neighbor-
hood base.

To see that ^ 0 is a semi-ring which satisfies the finite sequence
condition, let R, Rr e &0 such that R c Rr. Suppose further that
{R. I i — ly 2, , k: Rλ = R) is a finite subcollection of pairwise disjoint
members of & whose union is R' and let i be arbitrarily chosen.
We need only show that R{ is a convex polyhedron. For each integer
n(n Φ i,n — \, 2, ••-,&) there exists, by Theorem 2.1, a demi-space
Dn such that Dn => Ri and X\Dn ZD Rn. Thus

To show equality suppose xίR{. If x e Rf then there exists n Φ i
such that xeRn so that x$Dn. Thus if x is not in the right set of
the above equation it cannot be in the left set so that the equality
obtains, which proves that R{ is a convex polyhedron and hence a
member of ^ 0 .

To see that ^ 0 is a half ring which satisfies the finite chain
condition in the event that & is such a half ring, suppose
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{R, I i = 1, 2, , k; R = Ru R
r = Rk)

is the finite chain from R to R' {R,R'e&Q and RaR'). Let ί be
arbitrarily chosen. Since the preceding paragraph implies Ri+1\Ri e &Q

we need only show Rt e &0. From Theorem 2.1, there exists a demi-
space Dn such that DnZ)Rn and X\DnZ)Rn+1\Rn for all n. Thus
reasoning similar to the above, it follows that

R* nΓn
which completes the proof.

Let ^4^ be a translation invariant collection of convex sets which
forms a neighborhood base for a linear topological space, ^v^ is said
to be absorbing if aNe<yK whenever a>0,Ne^1^ and N is a
neighborhood of the origin.

COROLLARY 4.3. // &\{0} is an absorbing neighborhood base
such that & is a semi-ring that satisfies the finite sequence con-
dition, then each Re & is a convex polyhedron.

Proof. If R e & is a neighborhood of the origin then since
^?\{0} is absorbing, 2Re &. Moreover, it easily follows that cl(JB)c
int(2i?). The reasoning presented in paragraph 1 of the preceding
proof now applies to show that R is a convex polyhedron and the
assertion then follows from the translation invariance of ̂ ? .

The following theorem completes our characterization of the weak
topology in terms of semi-rings of convex sets.

THEOREM 4.4. The weak topology of linear topological space
always has an absorbing half ring of convex polyhedra which satis-
fies the finite chain condition as an equivalent neighborhood base.

Proof. Let Γ be the collection of all continuous linear functionals
and Γ' be a maximal subcollection of linearly independent members of
Γ. Let Sf be the collection of all half spaces either of the form

Όt = {xeX\f(x) ^c}

or

D7 = {xeX\f(x)>c}

where c ranges over all real numbers and / over all Γ'. By Theorem
3.1, the collection & of all convex polyhedra R which has a finite
subset of ^ as a representative class is a half ring which satisfies
the finite chain condition. Since Γ' is a linearly independent set, it
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easily follows that each nonvoid member of & has a nonempty interior.
Thus ^?\{0} is a neighborhood base for a linear topology which is
no finer than the weak topology. But since each member of Γ is
continuous in the topology induced by ^\{0}, this topology must be
at least as fine as the weak topology.

We now turn our attention to characterizing the subspaces of the
Banach space (c0) in terms of half rings.

THEOREM 4.5. If X is a normed linear space, the following
are equivalent:

1. X is linearly homeomorphic to a subspace of (c0).
2. X has an entire half ring & of convex polytopes with

countably many faces such that &\{0} is an absorbing neighborhood
base.

3. X contains a half ring & of convex sets such that &\{0}
neighborhood base.

Proof. To see that 1. implies 2., we define a convex subset R
of (c0) to be a half open rectangle if there exists a sequence {α< | i =
1,2, •••} of positive extended real valued numbers and a sequence
{bi\i — 1,2, •••} of negative extended real valued numbers such that:

(a) Lim inf i a{ > 0 ,
(b) Lim supί b{ < 0 ,
(c) R = {xe (c0) I bi < x{ ^ a%) .

If & is the collection of all half open rectangles and the null
set, then & can be seen to be an entire half ring of convex sets
such that ^?\{0} forms an absorbing neighborhood base for (c0).
Now if 7 is a subspace of (c0) then it follows that the collection
{RΓ\Y\Re&} is also an entire half ring of convex sets which with-
out the null set forms an absorbing neighborhood base. That each of
its members is a convex poly tope with countably many faces, follows
from Theorem 3.2. Thus every space X which is linearly homeomorphic
to a subspace of (c0) satisfies condition 2.

Since 2. obviously implies 3. we need only prove that 3. implies 1.
To accomplish this we can use the regularity of the topological space
X to prove the existence of a pair R, Rr of bounded nondegenerate
members of the half ring such that cl(iϋ) c int(iϋ'). Let {R{ \ i =
1, 2, •} be an ascending chain from R = R1 to Rf = \JiRi. From
Theorem 2.1, for each integer i, there exists a demi-space £>* such
that DiZ)R and X\DiZ)Ri. But then it is easily seen, by methods
similar to those employed in the proof of Theorem 4.2, that R is a
convex polytope with {Di \ i — 1, 2, •} as a representative class of
demi-spaces. Thus Theorem 2.3 and Corollary 2.4 imply that cl(iϋ) is
a bounded nondegenerate convex polytope (in the sense of [4] as well
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as in our sense) with a countable number of faces. Since we have
already seen this to be a sufficient condition for X to be linearly
homeomorphic to a subspace of (c0) in [4], the proof is complete.

COROLLARY 4.6. A necessary and sufficient condition that a
normed linear space X be isomorphic to a subspace of (c0) is that it
contains an entire half ring of convex sets which has at least one
bounded nondegenerate member.

Proof. From Theorem 3.2 every member of the half ring must
be a convex polytope with a countable number of faces. Thus it
follows from Theorem 2.3 that the closure of each of its nondegenerate
members is also such a convex polytope. The sufficiency of the con-
dition now follows from the result of [4] mentioned above. The
necessity is a consequence of the preceding theorem.

5* Measure theoretic properties of semi-rings* Zaanen [8]
has shown that a countable additive non-negative set function defined
on a semi-ring R which satisfies the finite sequence property can be
extended to such a function on the σ-ring σ\&\ generated by &.
Here we will extend this result by removing the restriction that &
satisfies the finite sequence property. Since a half ring is a semi-ring,
note that this result is still valid in case & is a half ring. In the
event that & is a half ring which satisfies the finite chain condition,
von Neumann [6] has shown that finitely additive nonnegative set
functions can be extended to the ring generated by ^ ? . As seen by
the following example this result is not valid for an arbitrary half ring.

Consider the half ring & defined in the proof of Theorem 4.5.
If R is an arbitrary member of this half ring as defined initially in
the proof, let

ω(R) — Lim inf a{ — Lim sup b{ .

To construct the counter example, we will consider the subclass
<̂ ?o = {Rε & i ω{R) < °°}. Since ω(R^) ^ ω(R2) whenever R1czR2 and
Rί,R2e.^?, it is clear that , ^ 0 is itself a half ring. If we define an
extended real valued nonnegative set function μ by

μ(R) = Π^di - bτ)lω(R)] ,

then the definition of implies that μ is well defined. To see that μ is
finitely additive, let R1 and R2 be two disjoint members of ^? 0 such
that R, \JR« = Re^0. It follows that R, and R2 differ from R in
exactly one coordinate, say the jth. Thus

R , = {x e (Co) I bt < Xi ^a^iΦ j} Π {x e (c 0) | b) < x 5 S a)}
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and

R2 = {x e (c0) I h < Xi ^ a{, i Φ j} Π {x e (c0) | b) < xά ^ a)} .

But since Rί U iϋ2 = R and i?! Π R2 — 0 we may assume without loss
of generality that

bj = b) < a) = b) < a) = aj .

Therefore

5 ) ( Π Γ^

That ^ has no finitely additive extension to the ring generated by
^ ? 0 follows if we let

β' = {XG(CO)| - 2 < xi ^2}

and

i2" -{a e (c0) | - 1 < α?4 ̂  1 for i Φ 1} n {xe (c0) | - 2 < a;, ^ 2} .

Then i2"ci2 ' while ^(i2") - 2 > 1 - μ(R').
Let ^ be a semi-ring which contains 0 and let £/* be the col-

lection of all sets which can be expressed as the union of a countable
number of pairwise disjoint members of ^ . Let ^ be the set of
all M e y for which there exists M' e S^ disjoint from ^f such that
M\jM'e&. Note that since 0 e ^ , there is no question of the
existence of ^£ and that ^£ always contains ^ . Observe further
that Mf is not necessarily unique for a given M and the notation M'
will be used to specify an arbitrary such member of ^/?.

THEOREM 5.1. ^ is a half ring which satisfies the finite chain
condition. In fact, M\Ne ^/ί whenever M, Ne ^/S.

Proof, (a). Let M, Ne^. Since

u UM' n N') u (M' n N) U (Mn N')] = (Mu M9) n

and since the bracketed part of the above equation can be expressed as
the union of countably many pairwise disjoint members of & which are
each also disjoint from Mf]N, it follows that MnNe^^. Moreover
(M n NY can be selected to be (Λf' Π N') U (AT' Π ^ U ί l Π iV').

(b). If Re&efNe^, then Rψe^t. For by (a), ΛΓίΊi? can
be expressed as the union of countably many pairwise disjoint members
of &. Since Nf] R is disjoint from #\iV and (i2\ΛΓ) {J (N Π R) = R
we need only show that R\N can be expressed as the union of a
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countable number of pair wise disjoint members of &. This is proba-
bly best realized by expressing R\N as

R\N = [R\(N U N')] U [iV n R]

and pointing out that the bracketed expressions are disjoint and can
be expressed as a countable union of pair wise disjoint members of . ^ .

(c). To show that M\Ne .^// for an arbitrary pair M, Ne Λ?\
let {Ri(M)} be a countable subcollection of pairwise disjoint members
of & whose union is M. Then

M\N = \Ji[Ri(M)\N] .

From (b), each R{(M)\N can be expressed as the union of countably
many pairwise disjoint members of &. But since the collection
{Ri(M)\N} is itself pairwise disjoint, we need only find a suitable
(M\N)'. But since (M\N) U [(M Π N) U M'] = M U M' e ^? , we note
that such a set is the bracketed part of the above equation and the
proof is complete.

It is easily seen that .^// is not a ring if one selects & to be
the collection of all right open and left closed intervals on the real
line whose Lebesgue measure is no greater than unity. This same
example also shows that the ring generated by ,./S is not necessa-
rily that generated by .^?. The σ-ring generated by & and ^// are
of course synonymous.

THEOREM 5.2. Every countably additive extended real valued
nonnegative set function μ1 defined on a semi-ring & has a unique
nonnegative countably additive extension to the half ring ^f.

Proof. If Me^/f, let {Ru} be a countable collection of pairwise
disjoint members of & whose union is M. Since the only possible
countably additive extension μ1 to ^/S must satisfy

μx{M) = ΣiμQ{Ru)

we take this to be the definition of μx. In order to show that μλ is
well defined on ^-/Zy let ^y£ = \J3R2j where {R2j} is a countable sub-
collection of pairwise disjoint members of R. Then

ΣφoiRu) - ΣiΣjμoiRu Π R2j)

= ΣjΣtμ^ n R2j)

Thus μ1 is well defined.
To see that μ1 is countably additive on ^//, let {Mi} be a counta-
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ble collection of disjoint members of M. For each i, let {Ri0) be a
countable subcollection of disjoint members of ,yf? whose union is M{.
Then

Σμi{M%) = ΣiΣjμoiRv)

— Σi,jμo(Rij)

= μi(\JiMi)

(where the notation Σifjμ0(Rij) is used to signify that the real numbers
{μo(Rij)} are summed under any ordering which eventually counts all
of the terms exactly once; it is readily seen that the limit of the
given series is independent of all such summation orders).

If μ0 is a countably additive nonnegative set function which is
σ-finite on a semi-ring & (i.e. for each R e & there is a countable
collection {Ri}a& such that μo(Ri) < co for each i and [JiR^R)
then clearly its extension μ1 is cr-finite on ._y//. But from [6, Th.
10.1.12 and Th. 10.1.14], μx (without σ-finiteness) can be extended
uniquely to the ring R\^//\ generated by M. If we denote this
extension by μ2 then the form of R\^/ίf\ [6, Th. 10.1.2], indicates
that μ2 is σ-finite. Thus it follows from [2, Chap. 3, Sec. 13, Th. A]
that:

COROLLARY 5.3. Every nonnegative countably additive set
function μ0 on a semi-ring & has a nonnegative countably additive
extension to the σ-ring, σ\&\ generated by &. If, moreover, μ0

is σ-finite on &, then its extension is unique.

The author is indebted to Professor R. E. Fullerton for his inter-
est and assistance, and Professor P. C. Hammer for introducing and
discussing the notion of a demi-space with him.
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