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Continuing the author's earlier investigation, this paper
studies the behavior of paths on (convex) polyhedra
relative to the facets of the polyhedra. In Section 1, the poly-
topes which are polar to the cyclic poly topes are shown to
admit Hamiltonian circuits, and the fact that they do leads to
sharp upper bounds for the lengths of simple paths or simple
circuits on polyhedra of a given dimension having a given
number of facets. Section 2 is devoted to the conjecture, due
jointly to Philip Wolfe and the author, that any two vertices
of a polytope can be joined by a path which never returns
to a facet from which it has earlier departed. This implies a
well-known conjecture of Warren Hirsch, asserting that n—d
is an upper bound for the diameter of ^-dimensional polytopes
having n facets. The Wolfe-Klee conjecture is proved here for
3-dimensional polyhedra, and a stronger conjecture (dealing
with polyhedral cell-complexes) is established for certain
special cases.

Our notation and terminology are as in [10, 11, 12, 13].1 In
particular, a polyhedron is a set which is the intersection of finitely
many closed half spaces in a finite-dimensional real linear space, and a
d-polyhedron is one which is ^-dimensional. The faces of a polyhedron
P are the empty set, P itself, and the intersections of P with the
various supporting hyperplanes of P. Two faces are incident provided
one contains the other. The O-faces and 1-faces of P are its vertices
and edges, and when P is a ώ-polyhedron its (d — l)-faces and (d — 2)-
faces are called facets and sub facets respectively. A proper polyhedron
is one which contains no line, or, equivalently (assuming it is not empty),
one which has at least one vertex. A polytope is a bounded poly-
hedron; equivalently, it is a set which is the convex hull of a finite
set of points. Two vertices of a polyhedron P are adjacent provided
they are joined by an edge of P. A path on P is a finite sequence
(xQ, xu , Xι) of consecutively adjacent vertices, and the integer I
is the length of the path. The diameter of a polyhedron is the smallest
number I such that any two vertices of the polyhedron can be joined
by a path of length ^l.2

The present paper is part of a development of recent years in

Received November 19, 1964. Research supported in part by the National Science
Foundation, U.S.A. (NSF-GP-3579).

1 Hirsch's conjecture is reported on p. 168 of [5]. See also p. 160 of [5] and
pp. 608-610 of [10]. And see footnote 16 at end of paper.

2 Diameters of polyhedra are studied in [10,25].
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which the importance of linear programming has reawakened interest
in the area forming the geometric background of the subject, namely
the study of the facial structure of polyhedra.3 Because of the special
importance of the simplex method, the study of paths on polyhedra
is especially relevant. Several authors have considered the behavior
of such paths relative to the number of vertices of the polyhedron
[2, 9,10,12,16]. However, in a practical linear programming problem
one has much more direct information about the number of facets of
the feasible region than about the number of its vertices, so it seems
appropriate to study the behavior of paths relative to the number of
facets. Such a study was initiated in [10, 12] and is continued here.

!• Longest simple paths and circuits* A path (x0, xu , xt) is
called a simple path provided no vertex is repeated; it is a simple
circuit provided I ^ 2 and xL — x0 but there is no other repetition
among the x/s. A Hamiltonian path or Hamiltonian circuit on a
polyhedron P is a simple path or circuit which runs through all the
vertices of P.'1

Two d -polyhedra P and Q are said to be combinatorially equivalent
provided there is a biunique correspondence between the faces of P
and the faces of Q such that both incidence and dimension are preserved.
Two polytopes P and Q will be called combinaiorialίy dual provided
there is a biunique correspondence between their faces such that inci-
dence is preserved and dimension is complemented, so that the s-faces
of one polytope correspond to the (d — 1 — s)-faces of the other.

The moment curve Md is the subset of Rcl consisting of all points
of the form (r, r", , rd) for r e R.ύ A cyclic d-polyίope is one which
is combinatorialiy equivalent to a ίi-polytope whose vertices are all on
Ma |6J.

THEOREM 1.1. // a d-polyίope is a cyclic d-polytope or is com-
binatorially dual to a cyclic d-polytope, then it admits a Hamillonian
circuit.

Proof. Since the 2-dimensional case is trivial, we assume that
d ^ 3. Consider a set V of at least d + 1 points on Mai and let
P — con F.° It is known that each point of V is a vertex of P, and

3 For a survey of some of the interconnections, see [13].
4 For results on the existence or nonexistence of Hamiltonian paths or circuits

in 3-polytopes, see [2, 9, 20, 21, 22, 23].
5 R denotes the real number field.
G Equality by definition is indicated by •— or — .
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that for d g: 4 each two vertices of P are joined by an edge of P
[4,6,17], whence of course P admits a Hamiltonian circuit. It is
known [6] that the facets of P are all simplices, each having d
vertices, and that a set F of d points of V determines a facet of P
if and only if between each two points of V ~ F there is (in the
natural ordering on Md) an even number of points of FJ From this
it is easy to identify the edges of P when d = 3, and to see that P
admits a Hamiltonian circuit. That disposes of the cyclic polytopes.

Now we want to produce a Hamiltonian circuit on a polytope Q
which is combinatorially dual to a cyclic polytope P, but rather than
working directly with the vertices and edges of Q we may consider
the facets and subfacets of P. It suffices to show that if P is as in
the preceding paragraph, then all of the facets of P can be arranged
in a sequence (F^ , Ft) such that Fι — Fo, there is no other repeti-
tion among the F/sf and F^ Π F4 is a subfacet for 1 <Ξ i <Ξ I. Since
all the facets of P are simplices, the last condition is equivalent to the
requirement that there are d — 1 vertices common to Fζ_x and Fim

Recalling Gale's characterization [6] of the facets of P, we see that
the problem at hand is purely combinatorial in nature.

For 2 ^ d < n, let F n = {1, , n} and let F(d, n) denote the
class of all ώ-pointed sets F in Vn such that between each two points
of Vn ~ F there is an even number of points of F. The initial parity
of F is the parity of the set of all points of F which precede the
first point of Vn ~ F. The set of all members of F(d, n) which have
odd [resp. even] initial parity will be denoted by F0(d, n) [resp. Fe(d, n)].
An ordered pair (F, G) of members of F0(d, n) will be called admissible
provided F Π G consists of exactly d — 1 points.

LEMMA. Suppose 2 ^ d < n. Let A consist of the first d points
of Vn. If d is even let Z consist of the last d points of Vn, and if
d is odd let Z consist of the first point and the last d — 1 points of
Vn. Then the members of F(d, n) which have the same initial parity as
A and Z can be arranged without repetition in a sequence (Fo, , Fk)
such that Fo — A, Fk — Z, and (F^u Ft) is admissible for 1 < i ^ k.

Proof of the lemma. Let the assertion of the lemma be denoted
by L(d, n). For d ~ 2, the assertion is obvious; we merely take
Ff — {i + 1, i + 2} c Vn. For d = 3, we keep the point 1 fixed and apply
the preceding pattern to the remaining two points; that is, JFV =

7 Gale's proof [6] is given only for the even-dimensional case, but it can be
extended without difficulty to the general case.
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{1, i + 2, i + 3}. The same procedure will carry us from any even
value of d to the next odd value, and it remains only to go from an
even value to the next even value. Specifically, we suppose that
L(d, n) is known for a given even d and for all n > d, and we want
to establish L(d + 2, m) for an arbitrary m > d + 2. This is accom-
plished by successive applications of

L(d, m - 2), L(d, m - 3), . ., L(d, d + 1) ,

running first through the members of F(d + 2, m) which contain {1, 2},
next through those which contain {2, 3} but not {1}, etc. The pro-
cedure is illustrated below for the case in which d + 2 = 6 and m =
10; the reader can easily supply the formal details for the general
argument.

1 2 3 4 5 6 7 8 9 10

x x x x x x 0 0 0 0 A

x x 0 0 0 0 x x x x

0 x x 0 0 0 x x x x

0 x x x x x x 0 0 0

Q O x x x x x x O 0

0 0 x x 0 0 x x x x

(O O O x x O x a x x

O O O a ί c α ccsca; 0

O O O O x x x ^ ί c x ^

To complete the proof of 1.1, we show that all of the members
of F(d, n) can be arranged in a sequence (Fo, , Ft) such that Fι =
Fo, there is no other repetition among the ίVs, and the pair (F^u F{)
is admissible for 1 ^ i g i. Let

i = { i : l ^ i g d } , B = (i: w - d + 1 ^ i ^ n] ,

C = {i: 1 ^ i ^ d) U {n}, and fl.= { l } u { o - ( i + l < ^ ^ ,

all members of F(d,n). Then the sequence (Fo, •• ,ίrr

z) is formed as
follows, using the patterns described in the lemma:

When d is odd, run through F0(d, n) from A to D; next go directly
to B] then run through Fe(d, n) from B to C, and finally return to A;

When d is even, run through Fe(d, n) from A to B; next go directly
to D; then run through F0(d, n) from D to C, and finally return to A.
The procedure is illustrated below with n — 14 and d — 5 or 6,
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1 2 3 4 5 6 7 8 9 10 11 12 13 14

/ y » Λ » / y » / y / y Λ Π Π Π Π Π Π Π Π A
tΛJ %Kj tλ/ %ΆJ %ΛS \J \J \J \J \J \J \J \J \J JΓi.

L(5, 14)
v α O O O O O O O O O

0 0 0 0 0 0 0 0 0 a ;

a ί c c c a O O O O O O

ί c α α α a O O O O O

α ^ ^ α ^ x O O O O O

O O O O O O O O t f ^

x O O O O O O O O a ;
L(5, 13)

x x x x x O O O O O

s c x x a s ί ε x O O O O

Again, the formal description is left to the reader.8

Now (following the pattern of [10] and [12]) let us denote the
class of all cϊ-polytopes by Pd1 while the subclasses Pd and Pf

d consist
respectively of the d-polytopes which are simple (each vertex incident
to d edges) and those which are simplicial (each facet a simplex).
For each polyhedron P, let λ(P) [resp. rc(P)] denote the largest number
which is realized as the length of a simple path [resp. simple circuit]
on P. We are interested in the maxima of λ(P) and tc(P) as P
ranges over various subclasses of Pd. Let us define

Λr(d, φ = max {λ(P): PePd and / r (P) ^ n} and

Kr(d, ri) = max {/c(P): PePd and / r (P) ^ n) ,

where / r (P) denotes the number of r-faces of P. Similarly, we define
Av

r and Kv

r (where Pd is replaced by Pd) as well as Aζ and Jf£ (where
Pd is replaced by P^). Our attention will be confined to two possible
values for r—namely, r = 0 and r — d — 1—and the results are as
follows:9

1.2 K,{d, n) = K{(d, n) = n = Jξ(d, n).+ 1 = A0(d, n) + 1.

1.3 (d - 1 ) Γ ^ — i l l + 2 ^ JΓ;(d, n) ^ ^i;(d, w) + 1 g
Ld — 1 J

with equality throughout if d ^ 3 or n ~ 2mod(d — 1).

8 It would be interesting to know which of the m-neighborly (2m)-polytopes
studied by Gale [6] and Grύnbaum [8] are such that their combinatorial duals admit
Hamiltonian paths or circuits.

9 These results are stated only for polytopes, but they can easily be reformulated
so as to apply to polyhedra; 4.5 of [11] is useful in this connection.
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In - -ΊWH^U1.4 Kd_λ(d, n) ^ Kl-τ(d, n) ^ L 2
\w — ίZ / \n — d

^ Λl^d, n) + 1 g yia-i(d, ri) + 1 ,

wiέfo equality throughout if d ^ 8, or n ^ d + 3, or % Ξ> (d/2)2 — 1,
or £/zβ MJSG conjecture is true,

1.5 Λd^(d, n) + 1 ^ K{_λ(d, n) ^

& equality throughout if d 5> 3 or ^ ^ cZ + 3.

These estimates for iv and yί may be compared with estimates
for the diameter function J given in |1O, 25] and for the height func-
tions if, S and i? given [12].

Proofs of 1.2-1.5. The truth of 1.2 follows immediately from
the fact that the cyclic polytopes admit Hamiltonian circuits.

For 1.3 we define g(n)-~ (d — l)(n — d) + 2 and consider the d-
polytopes Qn formed as follows: Qd+ι is a d-simplex with Hamiltonian
circuit (xu xz, , %g{d+1)i xt); given a simple d-polytope Qn with Hamil-
tonian circuit (#?,#?, , x^{n)1 x"), we form QnΛi by truncating Qn at
the vertex xg{n), and thus replacing xg{n) by a new facet which is a
(ίZ — l)-simplex whose vertices lie on the d edges of Qn which issue
from Xg{n). The rf-polytope QnΛ1 is simple, has g(n + 1) vertices, and
admits a Hamiltonian circuit

where ^ e lajj^.i, a;J(n)|and Xg{

ι

n\i)e]x^n),x^[m (With additional care,
we can also insure that Qn admits a Hamiltonian path which is a
" maximum gradient" path.) For the details of this construction and
for the rest of the proof of 1.3, see the proof of (3) in [12],

To establish all of the inequalities of 1.4, it suffices to show that
Kl_Λ{d, n) ^ φ(d, n), where

φ(d, ri) —
\n — d

Gale [6] has proved that a cyclic d-polytope with n vertices is simpli-
cial and has exactly φ(d, n) facetsr), whence the dual polytopes are
simple and have n facets and <p(d, n) vertices. Since the dual
polytopes admit Hamiltonian circuits by 1.1, the desired inequality
follows. (This shows also that equality holds in 1.3 whenever n~φ{d, m)
for some m > d.) For equality in 1,4, it suffices to show that if a
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cZ-polytope has at most n facets, then it has at most <p(d, n) vertices.
This statement was called the " JSG conjecture " in [11], but should
have been called the MJSG conjecture because of its first appearance
in [17]. It has been established for n <; d + 3 [7] and n ^ (d/2)2 - 1
[11], hence in particular for d S> 6. And see [8] for d = 7,8.

For 1.5 it suffices to follow the proof of (7) in [12], noting that
Hamiltonian circuits are admitted by the polytopes Pn which are
constructed there. (They also admit "maximum gradient" Hamiltonian
paths.) Alternatively, we could employ simplicial d-polytopes Q'n which
are dual to the simple polytopes Qn; Q'd+1 is a ^-simplex and Q'n+1 is
formed by adding a pyramidal cap over one of the facets of Qf

n.
For equality in 1.5 when d > 3, it would suffice to show that if a

simplicial d-polytope has n vertices, then it has at least (d — l)(n—d) + 2
facets. The equivalent dual statement was made by Bruckner [3] for
the 4-dimensional case, but his proof was incorrect (as noted in [18]).
Griinbaum [8] has settled the case n S d + 3.

2* The existence of Wv paths* Consider a path (x0, xu , xt)
on a polyhedron P, and for 1 :g i ^ I let σ{ denote the edge [#«_i, Xi].
The path will be called a Wv path or a We path provided the follow-
ing respective conditions are satisfied:

(Wv) if i < j < k and a facet F of P includes both x{ and xk,
then F includes x3- also;

(We) σi_1 Φ σ^l ^ i S l)\ iί ί < j < k and a facet F oί P contains
both Oi and σk, then F contains σ3 also.

Every Wv path is simple. A We path of length I need not be
simple, but it must involve I distinct edges. These and some related
types of paths are considered in [14]. Here we are interested mainly
in Wv paths, for the conjecture formulated in the introduction may
be stated more formally as follows: Any two vertices of a polytope
can be joined by a Wυ path. This will be called the Wυ conjecture.
The connection between the Wv conjecture and Hirsch's conjecture1

arises from the following remark.

2.1. If P is a d-polyhedron which has at most n facets and I
is the length of a Wv path [resp. We path] on P, then I ^ n — d
[resp. I ^ n — d + 2].

Proof. There are facets G{ such that

x0$ G^ eG0~G» --, x^e G^2 - G^u xι e Gt_x .

From condition (Wv) it follows that the G/s are distinct and x0 is not
included in any of the facets Go, , (?z_i. Since there are at least d
facets of P which include xQ, we have n i> d + I. A similar argument
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[14] applies to We paths.
For n > d, there exist simple d-polytopes which have exactly n

facets and which admit Wv paths of length n — d. For example, the
d-polytopes Qn of § 1 have this property. Note also that Hirsch's
estimate for the diameter of a polyhedron cannot be improved in general,
since for n > d there exists a simple ώ-polyhedron Jn which has n
facets and is of diameter n — d. To start the construction, let Jd+1

be a half-cylinder over a (d — l)-simplex; that is, Jd+1 is the linear
sum in Rd of a (d — l)-simplex and a ray which is not parallel to
the hyperplane determined by the simplex. Now suppose that we
have constructed a simple ώ-polyhedron Jn such that any two vertices
of Jn can be joined by a path of length g n — d and there are two
vertices xn and zn of Jn which cannot be joined by any shorter path.
Suppose further that xn is incident to an unbounded edge pn of Jn and
to cZ — 1 bounded edges whose other endpoints are y\, , yί~K Then
Jn+1 is formed by truncating Jn at the vertex zn, thus replacing zn by
a facet which is a (d — l)-simplex having vertices £Λ + 1 e pn ~ {zn} and
yί+i£]yί,Zn[. Let &n+1 = αn. Since the only approach to zn+1 along
the edges of Jn+1 is through the vertices yi+1, it is evident that xn+1

and zn+1 cannot be joined in Jn+1 by a path of length < n + 1 — d.
Thus the induction can be carried through and the d-polyhedra Jn

can be constructed as described.10

In discussing the Wv conjecture, we employ the notion of a poly-
hedral cell-complex (or simply complex), where this is a finite family
K of polyhedra (the cells of K) in a finite-dimensional real linear space
such that each face of a cell of K is itself a cell of K, and the inter-
section of any two cells of K is a face common to both.11 If P is a
polyhedron, the family of all faces of P forms a complex, as does the
family of all faces other than P itself; the latter complex will be
demoted by B(P) and will be called the boundary complex of P. The
notions of vertex, edge and path are defined for complexes in the
obvious way, and a path (x0, xl9 •• ,xz) in a complex will be called a
Wυ path provided the following condition is satisfied: if i < j < k
and a cell of K includes both xi and xk, then it includes x3- also. The
We paths in K are similarly defined. These requirements may appear
to be stronger than those for Wυ paths in polyhedra, since they are
not restricted to cells of a particular dimension. However, we note
the following fact.

10 At least for d ̂  3, the unboundedness of the polyhedra in this construction
is essential, for when d^kZ the maximum diameter of c£-polytopes having n facets
is [n(d-l)ld] -d + 2 [10].

11 This is simply a finite geometric cell-complex in the sense of Alexandroff &
Hopf [1], except that the cells are not here required to be bounded.
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2.2. If P is a cell of a polyhedral cell-complex K, then every
Wv path on P is a Wv path in K. The same is true of We paths.

Proof. Since the two situations are similar, we consider only the
former. Let (χ0, , xt) be a Wv path in P, and suppose a cell C of
K includes xt and xk but not xh where i < j < k. Then the same is
true of C Π P> which is a proper face of P. Since C n P is the in-
tersection of all the facets of P which contain C Π P, there must
be a facet of C (Ί P which includes Xι and % but not Xj. This is a
contradiction and completes the proof.

The following useful fact was noted by Clyde Kendall and Johns
Rulifson.

PROPOSITION (Kendall and Rulifson) 2.3. Suppose that K is a
polyhedral cell-complex in the Euclidean plane, and that the vertex
x of K can be joined to the vertex y by a path in K. Among all
paths from x to y in K, let Π be one of minimum Euclidean length.
Then Π is a Wv path.

Proof. The result is an immediate consequence of the fact that
if C is an open convex set in the Euclidean plane and u and v are
boundary points of C which can be connected by an arc in the comple-
ment of C, then the shortest such connecting arc lies in the boundary
of C.

With the aid of 2.3, we can almost prove the Wv conjecture for
3-polyhedra.

THEOREM 2.4. Suppose that x and y are vertices of a 3-poly-
hedron P, // P is unbounded, then x and y can be joined by a Wv

path on P. If P is bounded and F is a facet of P, then x and y
can be joined by a path on P for which no facet other than F
violates the Wv condition.12 (See footnote 17 at end of paper.)

Proof. If P is bounded, we merely apply 2.3 to the Schlegel dia-
gram of P in F. This is obtained by choosing a point z outside P but
near an inner point of F, so that for each point w of P ~ F the
intersection [w,z]Γ\ F consists of an inner point ψ(w) of F. The
projection ψ takes the complex {C: C e B(P) ~ {F}} onto a complex K
in the plane of F, and then the desired conclusion follows from 2.3.

Now suppose that P is unbounded and assume without loss of
12That is, x and y are joined by a path (aco, xi, - , %ύ such that if i < j < k and

G is a facet of P which includes xι and xjc, then G includes XJ or G ~ F.
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generality that P lies in a 3-dimensional real linear space E. As is
easily verified, the interior of P contains a ray p which issues from a
boundary point of P. We may assume that the boundary point is the
origin 0, whence p — ]0, co [u for some u e int P. Let H be a plane
which supports P at 0, whence E — H + Ru and each point q of i?
admits a unique expression in the form q — qh + gru with qhe H and
gr 6 i?. Let F denote the (finite) set of all vertices of P and let
m — max {vr: v e V} + 1, whence V is contained in the half-open strip
H + [0, m[u and thus the same is true of every bounded face of P.
For each point qe H + [0, m[u, let ^(g) denote the point at which H
is intersected by the ray from mu through gβ For each proper face
C of P, let Cπ-= ψ(CΓ) (H + [0, m[u). It can be verified that
{CH: C e B(P)} is a cell-complex which is combinatorially equivalent to
the boundary complex B(P), and hence the desired conclusion follows
from 2.3.

In order to complete the proof of the Wv conjecture for 3-poly-
hedra, we still must settle (rather than merely "almost settle ") the
case of 3-polytopes.

THEOREM 2.5. Any two vertices of a S-polytope P can be joined
by a Wv path on P. (See footnote 17 at end of paper.)

Proof. The proof is by induction on the number n of facets of P,
the assertion being obvious when n — 4 for then P is a tetrahedron.
Suppose that n > 4 and that the theorem has been proved for all 3-
polytopes having fewer than n facets. Consider an arbitrary 3-polytope
Q which has n facets. By a theorem of Steinitz & Rademacher [19]13,
the complex B(Q) is (combinatorially equivalent to one which is) ob-
tained by means of a facet-splitting of type 1, 2 or 3 from a complex

Figure 1

13 See also Lyusternik [15].



PATHS ON POLYHEDRA. II 259

B(P), where P is a 3-polytope having n — 1 facets. The three types
of facet-splitting are depicted in Figure 1 above. Each involves the
addition of a new edge [u, v], cutting across one of the facets of P; a
facet-splitting of type i involves also the addition of i — 1 new vertices
and the consequent splitting of i — 1 of the edges of P. We shall
follow the notation of Figure 1.

Now consider an arbitrary pair x and y of vertices of Q; we want
to show that they can be joined by a Wυ path Π on Q. lί {x,y} —
{u, v}, we let Π — (x, y). Now suppose that x and y are both vertices
of P, whence (according to the inductive hypothesis) they are joined
by a Wυ path Π1 on P. If every edge of Π1 is also an edge of Q,
let Π2 = /71# Alternatively, some edge(s) of Π^^ may be split in the
transition from P to Q, and in this case Π2 is obtained from Π1 by the
corresponding replacement(s) of one edge of P by two edges of Q.
{For example, , δ, v, b', appears in 772 if , δ, δ', appears
in /71#) Then Π2 is a path on Q, and it can be verified that Π2 is a
Wυ path or both u and v appear in /72. In the latter case, a Wv path
from x to y on Q is formed by simply omitting from Π2 all vertices
which appear between u and v.

For the remaining case, we may assume without loss of generality
that y — v,x Φ u, and the splitting is of type 2 or type 3. Let Π1

be a Wυ path from x to b on P, and let 772 be formed as above. If
u appears in 772, a Wv path /73 from & to y on P is obtained from
Π2 by inserting v(—y) after % and discarding all vertices of Π2 which
appear after u. If u does not appear in Π2 but v does appear, /73 is
obtained from Π2 by discarding all vertices of Π2 which appear after
v. If neither u nor v appears in /72, Πs is obtained from Π2 by
inserting v after δ. In each case, Π3 is a ΫFV path from x to 7/ on
Q, and this completes the proof.

Finally, we show under very restrictive hypotheses that shortest
paths are Wv paths or We paths. Here (in contrast to 2.3) shortness
is not a metric notion but rather involves the combinatorial notion of
length employed in § 1.

PROPOSITION 2.6. Suppose that p and q are vertices of a poly-
hedral cell-complex K, and that Π is a shortest path from p to q
in K(that is, a path involving the smallest possible number of vertices).

If every cell of K is of diameter ^ 1 , then Π is a Wv path.
If every cell of K is of diameter ^ 3 , then Π is a We path.
If K is the boundary complex of a simple d-polyhedron P and

every facet of P is of diameter ^2, then Π is a Wυ path or p and
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q lie together in a facet F of P. (In the latter case, p and q can
be joined in F by a path which is both a Wυ path and a shortest
path in K. However, 77 itself need not be a Wv path.)

Proof. Let 77 = (χOf χlf , χt) and suppose that 77 is not a Wv

path. Then some cell C of K includes xt and xk but neither xi+ί nor
xk_u where O^ί<i + l^k-l<k^l. If δ(C) ̂  I14, then [xi9 xk] e K
and (xQ, •• ,xi,xk, , xt) is a path from p to q of length < ϊ , con-
tradicting the assumption that 77 is a shortest path. This establishes
the first assertion of 2.6.

Under the hypotheses of the third assertion, we may assume that
C is a facet of P. Since 77 is a shortest path and δ(C) ^ 2, we see that
i + 1 = k — 1 and there is a vertex y of C, not among the x/s, such
that [xiy y] and [y, xk] are both edges of C. Since P is a simple d-
polyhedron, each of x{ and â  is incident to exactly d edges of P and
to exactly d — 1 edges of C, whence it follows that i — 0 or #<__! e C
and also that k — I or xk+1eC. If a j ^ e C or a;H 1GC, we may use
the fact that δ(C) g 2 to produce a path of length <l from p to g.
Since this is impossible, it follows that i = 0, k = I, and (p, g} c C
The statement in parentheses is then easily verified, and the proof of
the third assertion is complete.

For the second assertion of 2.6, let us assume that 77 is not a
We path, whence some cell C of K contains the edges σζ(= [#*_!, #J)
and σk of K but neither σi+1 nor o"^^, where l ^ ΐ < i + l^/b — l<k^l.
In fact, i + l<A;~1, for otherwise σί+1aC. Thus we have Xi_u xk e C
with k ^ i + 3, and since δ(C) ^ 3 it is possible to connect p and g
by a path shorter than 77. The contradiction completes the proof.

Figure 2 depicts a complex in which every cell is of diameter ^ 2 ,
and yet no shortest path from p to q is a Wv path. Figure 3

Figure 2

14 <?(C) is the diameter of C.
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Figure 3

is the Schlegel diagram of a simple 3-polytope in which no shortest
path from p to q is a Wυ path.15
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